自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
具有时滞和分段常数变量的单种群收获模型的分支分析
PDF下载 ()
陈斯养, 朱晓琳
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
陈斯养,男,副教授,研究方向为生态数学与数学建模. E-mail:chsy398@126.com.
摘要:
讨论了具有时滞和分段常数变量的单种群收获模型的稳定性和Neimark-Sacker(N-S)分支的存在性以及稳定性.利用特征值理论给出模型正平衡态局部渐近稳定及分支存在的参数范围,当r=r0=b\[eb-2+((eb-2)2+4)1/2\]/2(eb-1)时,模型产生N-S分支;根据分支理论与中心流形定理,得到决定分支方向以及稳定性的具体表达式,证明了:若d<0(>0),则从平衡态分支出唯一稳定(不稳定)的闭不变曲线;通过实例与数值模拟验证了所得结论的正确性、可实现性和模型复杂的动力学行为.
关键词:
时滞微分方程; 分段常数变量; 稳定性; Neimark-Sacker分支
收稿日期:
2012-09-25
中图分类号:
O175.7
文献标识码:
A
文章编号:
1672-4291(2013)02-0001-04
基金项目:
国家自然科学基金资助项目(10871122; 11171199).
Doi:
Bifurcation analysis of the single population harvest model with time-delay and piecewise constant variables
CHEN Si-yang, ZHU Xiao-lin
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
The stability and Neimark-Sacker(N-S) bifurcation of a single population harvest model with time delay and piecewise constant variables are discussed. The range of the parameter for the local stability and the existence of N-S bifurcation of this model are derived, by using the theory of characteristic value,it is proved that the model undergoes N-S bifurcation when r=r0=b\[eb-2+((eb-2)2+4)1/2\]/2(eb-1). The direction and stability of N-S bifurcation are derived by using the bifurcation theory and the center manifold theorem; it is proved that the only stable(unstable) closed unchanged curve appears if d<0 (>0). Some examples and numerical simulations are presented to illustrate the correctness and realizability of theoretical results and the complex dynamical behaviors of this model.
KeyWords:
delay differential equation; piecewise constant variable; stability;Neimark-Sacker bifurcation