自然科学版
陕西师范大学学报(自然科学版)
资源与环境科学
甘肃省直接生活能源消费碳排放分析及预测
PDF下载 ()
李媛1,2, 徐坤3,
谢应忠1*(1 宁夏大学 农学院; 2 宁夏大学 资源环境学院;3 宁夏大学 西北退化生态系统恢复与重建教育部重点实验室,宁夏 银川 750021)
李媛,女,讲师,博士研究生,主要从事草地生态、环境保护及可持续发展研究.E-mail: ly7003@126.com.*通信作者:谢应忠,男,教授,博士研究生导师. E-mail:xieyz@nxu.edu.cn.
摘要:
利用排放系数和对数平均D氏指数(LMDI)分解法对甘肃省直接生活能源消费碳排放量和影响因素进行了计算和分析,并结合多种方法建立了预测模型.研究结果显示:(1) 2000—2010年,碳排放量呈现整体增加的趋势,增幅为55.14%,在各种能源中煤的碳排放居于首位.就城乡结构而言,城镇的人均碳排放量高于农村,但由于农村人口基数大,其碳排放总量却高于城镇;(2) 人均消费水平和能源消费强度分别对人均碳排放起到正向促进和负向抑制作用,城镇居民消费水平的提高和城镇人口比例的逐年上升以及城镇能源消费强度的下降和城镇消费在总消费比例的增加是根本原因;(3) 以GM(1,1)预测模型和三次多项式模型为基础的组合预测模型,具有精度高、偏差小、预测结果较合理等优点,具有一定应用潜力.
关键词:
甘肃; 对数平均D氏指数; 组合预测
收稿日期:
2012-09-05
中图分类号:
X24
文献标识码:
A
文章编号:
1672-4291(2013)01-0089-06
基金项目:
国家973计划前期研究项目(2010CB434805);国家自然科学基金资助项目(31160484).
Doi:
Analysis and forecasting of carbon emission from directhousehold energy consumption in Gansu
LI Yuan1,2, XU Kun3, XIE Ying-zhong1*
(1 School of Agriculture, Ningxia University;2 School of Resources and Environment, Ningxia University;3 Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia ,China)
Abstract:
Carbon emission coefficient and Logarithmic Mean Divisia Index (LMDI)method were used to calculate carbon emission of direct household energy consumption and analyze the influence factors. And prediction model was built by combining several methods. Results show that: (1)The amount of carbon emission appeared a growing trend in 2000—2010, and growth range was 55.14%. In terms of energy type, the emission caused by carbon was largest. As far as urban-rural structure, the per capita carbon emission (PCE) of urban is larger than that of rural. However, rural population is bigger than urban, the total carbon emission of former is larger. (2) The per capita consumption level and energy consumption intensity play the promoting and restraining roles for PCE separately. The deep-root reasons are that per capita consumption level, population proportion and consumption ratio of urban increased, meanwhile, energy consumption intensity in urban decreased. (3) The combination forecasting model based on GM(1,1)and cubic polynomial forecasting model is suitable and has high forecasting accuracy.
KeyWords:
Gansu; Logarithmic Mean Divisia Index( LMDI); combination forecasting