自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
具有阶段结构、时滞和接种的幼年染病单种群模型的稳定性
PDF下载 ()
王烈, 陈斯养
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
王烈, 男,讲师,博士研究生,研究方向为生物数学.E-mail:wanglie@snnu.edu.cn.
摘要:
研究了一类具有阶段结构、时滞和接种的幼年染病单种群模型的稳定性.应用极限系统理论和构造Liapunov函数,得到系统各类平衡点全局渐近稳定的充分条件.结果表明:在一定的接种率下,且整个种群的生育率位于某一区间时,最终疾病将趋于灭绝;当种群的生育率高于某一阈值时,疾病将最终成为地方病.
关键词:
阶段结构; 时滞; 接种; 全局渐近稳定
收稿日期:
2012-06-01
中图分类号:
O175.1
文献标识码:
A
文章编号:
1672-4291(2013)01-0015-05
基金项目:
国家自然科学基金资助项目 (11171199, 61273311).
Doi:
Stability of a delayed stage-structured single-species model with disease in infancy and vaccination
WANG Lie, CHEN Si-yang
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
A delayed stage-structured single-species model with disease in infancy and vaccination is investigated. Using limit system theorem and constructing Liapunov function, the sufficient conditions for the global asymptotically stability of the positive equilibrium point and the infection-free equilibrium point are obtained.The results show that in the certain immunization coverage rate, the disease will eventually become extinct when the birth rate of the species is located in an interval,and when the birth rate is large than a threshold, the disease will eventually become an endemic.
KeyWords:
stage-structure; delay; vaccination; global asymptotical stability