自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
具有阶段结构的捕食-食饵模型的定性分析
PDF下载 ()
姚若飞, 李艳玲*
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
姚若飞,男,硕士研究生,研究方向为反应扩散方程及其应用. E-mail: yaorf5812@126.com.*通信作者: 李艳玲,女,教授,博士. E-mail:yanlingl@snnu.edu.cn.
摘要:
研究了一类捕食者具有阶段结构的捕食-食饵模型. 运用抛物型方程组的比较原理得到了整体解的存在性和半平凡解的全局稳定性.针对稳态问题, 给出正解的先验估计及非常数正解的不存在性, 同时利用分歧理论研究了一维空间下在3个常数平衡态处的局部分歧、局部分歧解的近似结构以及非常数正解的存在性.
关键词:
捕食-食饵; 分歧理论; 阶段结构
收稿日期:
2012-05-15
中图分类号:
O175.26
文献标识码:
A
文章编号:
1672-4291(2013)01-0010-05
基金项目:
国家自然科学基金资助项目(10971124); 教育部高等学校博士点专项基金资助项目(200807180004).
Doi:
Qualitative analysis on a predator-prey model with stage structure
YAO Ruo-fei, LI Yan-ling*
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
A predator-prey model with stage structure is discussed. Based on the comparison principle for parabolic equations, the global existence of solutions and the global asymptotical stability of a semitrival solution are obtained. For the corresponding steady-state problem, a prior estimate of positive solution and a nonexistence result for non-constant positive solution are given. By using the bifurcation theorem, it is proved that the local bifurcation occurs at the three constant solutions in one dimension case, and the structure of solutions near the bifurcation point and the existence of non-constant positive solutions are discussed.
KeyWords:
predator-prey; bifurcation theory; stage structure