自然科学版
陕西师范大学学报(自然科学版)
物理学
基于碰撞声信号的玉米颗粒识别与分类
PDF下载 ()
郭敏, 梅亚敏
(陕西师范大学 计算机科学学院, 陕西 西安 710062)
郭敏,女,教授,博士,主要从事模式识别、图像处理和数据融合研究.E-mail:guomin@snnu.edu.cn.
摘要:
为实现对玉米颗粒的自动分类,利用碰撞声信号装置采集玉米完好粒、虫蛀粒和霉变粒的840个声信号.分别从时域和频域对碰撞声信号进行分析和处理,提取信号特征.采用主成分分析方法对特征数据降维,利用BP神经网络进行分类.实验结果表明:该方法对完好粒、虫蛀粒和霉变粒3种玉米颗粒分类的正确率均达到90%以上.表明利用碰撞声信号识别玉米完好粒、虫蛀粒和霉变粒的效果良好,具有较强的实际应用价值,为检测玉米颗粒品质提供了一种新的途径.
关键词:
玉米碰撞声; 特征; 主成分分析; BP神经网络; 分类
收稿日期:
2012-04-16
中图分类号:
TP391.42
文献标识码:
A
文章编号:
1672-4291(2012)05-0031-04
基金项目:
国家自然科学基金资助项目 (10974130); 陕西省教育厅科学研究计划项目 (11JK0519).
Doi:
The identification and classification of corn kernelsbased on impact acoustic signal
GUO Min, MEI Ya-min
(College of Computer Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
In order to realize the automatic classification of corn kernels, this approach collected 840 impact acoustic signals of undamaged kernels, insect damaged kernels and moldy kernels by apparatus of collecting impact acoustic signal, analyzed these signals from the time and frequency domain, extracted the signal features, used the principal component analysis method to reduce the dimensions of the feature data. Finally, BP neural network is used to classify the corn kernels. The classification accuracy of undamaged kernels, insect damaged kernels and moldy kernels were above 90%. The experimental results show that using impact acoustic signal, one can gain a good result in identifying undamaged kernels, insect damaged kernels and moldy kernels. So the approach has a more comprehensive value in practical application and provides a new method for corn kernels quality detection.
KeyWords:
corn kernel impact acoustic signal; feature; principal component analysis; BP neural network; classification