自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
基于模糊ABC算法的空间域SAR图像阈值分割
PDF下载 ()
柳新妮,马苗*
(陕西师范大学 计算机科学学院, 陕西 西安 710062)
柳新妮,女,硕士研究生,主要研究方向为智能信息处理.E-mail: liuxinni@stu.snnu.edu.cn.*通信作者: 马苗,女,副教授,博士.E-mail: mmthp@snnu.edu.cn.
摘要:
为提高SAR(合成孔径雷达)图像分割速度,提出一种基于模糊ABC(人工蜂群)算法的空间域SAR图像阈值分割方法.该方法利用灰度形态学算子抑制图像噪声,根据抑噪图像的直方图特征缩小阈值范围,同时引入模糊隶属度函数优化蜂的运动轨迹,快速搜索最优分割阈值.实验结果显示,该方法不仅能有效抑制可见光图像和真实SAR图像中的斑点噪声,而且分割速度与分割质量明显优于基于遗传算法和人工鱼群算法的分割方法.
关键词:
合成孔径雷达图像; 人工蜂群算法; 直方图特征; 阈值分割; 交叉熵
收稿日期:
2012-05-03
中图分类号:
TP391.41
文献标识码:
A
文章编号:
1672-4291(2012)06-0016-06
基金项目:
国家自然科学基金资助项目(10974130; 61202153); 陕西省青年科技新星资助项目(2011kjxx17).
Doi:
SAR image threshold segmentation in spatial domain based on fuzzy artificial bee colony algorithm
LIU Xin-ni, MA Miao*
(College of Computer Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
In order to increase the speed of SAR image segmentation based on fuzzy Artificial Bee Colony algorithm, a method of SAR image in spatial threshold segmentation is proposed.In this method, gray morphology operations are employed to reduce the inherent image noise, and the searching range is reduced on the basis of the histogram feature of the denoised image. Simultaneously, a fuzzy function is introduced in order to refine the motion of bees, and fast search the optimal threshold. Experimental results show that the proposed method is not only robust to the speckle noise in SAR images, but also superior to the segmentation methods based on Genetic algorithm or Artificial Fish Swarm algorithm in terms of segmenting speed and quality.
KeyWords:
synthetic aperture radar(SAR) image; artificial bee colony(ABC) algorithm; histogram feature; threshold segmentation; cross entropy