自然科学版
陕西师范大学学报(自然科学版)
资源与环境科学
中国旅游交通碳排放及地区差异的初步估算
PDF下载 ()
魏艳旭,孙根年*,马丽君,李静
(陕西师范大学 旅游与环境学院,陕西 西安 710062)
魏艳旭,男,硕士研究生,主要研究方向为环境评价与治理.E-mail:weiyanxucyb@sina.com.*通信作者:孙根年,男,教授,博士研究生导师.E-mail:gnsun@snnu.edu.cn.
摘要:
依据我国交通客运周转量时间和截面数据,根据旅游者在客运量中所占比重对我国旅游交通碳排放进行了初步估算,结果发现:(1)近30 a来,随着旅游业发展,中国旅游交通碳排放呈现快速增长,其中铁路旅游交通碳排放从118.0万t增至672.2万t,公路从133.9万t增至2 480万t,水运从14.5万t下降到7.80万t,民航从35.1万t增长到2 992万t;碳排放与游客量呈现线性相关性;(2)依据2006-2008年截面数据分析了我国旅游交通碳排放的地域差异,其中铁路旅游交通高碳省区为河南、河北和湖南,公路为广东和江苏,水运为重庆、广东、辽宁、浙江,民航为北京、上海和广东,并绘制了旅游交通碳排放空间分布图.通过研究使得中国旅游交通碳排放的估算进一步细化.
关键词:
旅游交通;碳排放;低碳旅游;时间变化;地域分布
收稿日期:
2011-06-23
中图分类号:
F590.3
文献标识码:
A
文章编号:
1672-4291(2012)02-0076-09
基金项目:
国家自然科学基金资助项目(4071052);陕西省软科学研究项目(2009KRM013).
Doi:
Estimating the carbon emissions and regional differences of tourism transport in China
WEI Yan-xu, SUN Gen-nian*, MA Li-jun, LI Jing
(College of Tourism and Environment, Shaanxi Normal University,Xi′an 710062, Shaanxi, China)
Abstract:
Using time-series and cross-section data of passenger-kilometers and according to the weight of tour among passenger, carbon emission of tourism transport is estimated in China. Results show that: (1) with the development of tourism, carbon emission in tourism transport increases quickly in the last three decades, in which emission of railway increases from 1.18 million tons to 6.72 million tons, emission increases from 1.34 million tons to 24.8 million tons for highways, while for waterways it decreases from 0.145 million tons to 0.078 million tons, and it changes from 0.351 million tons to 29.9 million tons for civil aviation; there is a linear relationship between carbon emission and number of tour; (2) using the cross-section data from 2006 to 2008, regional differences of carbon emissions from tourism transport are analyzed in China; high carbon emitting provinces for railway are Henan, Hebei and Hunan, Guangdong and Jiangsu are the high emission provinces for road, the high emission provinces for ship are Chongqing, Guangdong, Liaoning, Zhejiang, Shandong and Shanghai, while Beijing, Shanghai and Guangdong are three highest provinces; then spatial distribution maps for carbon emissions of tourism transport are drawn. The study of estimation for tourism transport in China is refined deeply in this paper.
KeyWords:
tourism transport; carbon emission; low carbon tourism; time change; geographical distribution