自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
障碍问题自由边界的多孔性
PDF下载 ()
郑军1, 章志华2
(1 兰州大学 数学与统计学院,甘肃 兰州 730000; 2 电子科技大学 数学科学学院,四川 成都 611731)
郑军, 男, 博士研究生, 主要从事二阶椭圆型偏微分方程的研究.E-mail:zheng123500@sina.com.
摘要:
研究了p-Laplacian型方程障碍问题.通过定义单位球内的一类函数族G(p)(它包含所求障碍问题的解),证明了G(p)中的函数在自由边界的增长率为p/(p-1),即证明了所求障碍问题的解在自由边界的增长率. 由G(p)中的函数在自由边界的增长性, 证明了障碍问题自由边界的多孔性.
关键词:
障碍问题; p-Laplacian型方程; 自由边界; 多孔性
收稿日期:
2011-07-20
中图分类号:
O175.23
文献标识码:
A
文章编号:
1672-4291(2012)02-0011-03
基金项目:
国家自然科学基金资助项目(10971088).
Doi:
Porosity of the free boundary in the obstacle problems
ZHENG Jun1, ZHANG Zhi-hua2
(1 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Gansu, China;2 School of Mathematical Science, University of Electronic Scienceand Technology of China, Chengdu 611731, Sichuan, China)
Abstract:
The obstacle problem for p-Laplacian type equation is discussed. By defining a class of functions G(p) in a unit ball which contains the solutions to the obstacle problem, it is proved that the growth of each function in the class G(p) is p/(p-1). Then the p(p-1)-growth of each solution to the obstacle problem near the free boundary is obtained. By the exact growth of the functions in G(p), a porosity result for the free boundary of solutions to the obstacle problem is established.
KeyWords:
obstacle problem; p-Laplacian type equation; free boundary; porosity