自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
广义逆在幂等算子表示中的应用
PDF下载 ()
窦艳妮,杜鸿科
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
窦艳妮,女, 讲师, 博士, 主要从事算子理论与算子代数研究. E-mail:douyn@snnu.edu.cn.
摘要:
利用算子分块方法讨论了使用广义逆表示幂等算子的问题. 证明了Hilbert空间上幂等算子A(BA) B成为正交投影的充要条件是PB*B=B*BP(这里A表示A的Moore-Penrose逆), 其中PB*B|R(P)是R(P)上的可逆算子, PA|R(A*B*)是R(A*B*)上的可逆算子. 得出幂等算子P能表示成形如A(BA) B的形式当且仅当PAA*=AA*P*, 正交投影P能表示成形如A(BA) B的形式当且仅当PAA*=AA*P.
关键词:
幂等算子; 分块算子矩阵; Moore-Penrose逆
收稿日期:
2011-06-23
中图分类号:
O177.1
文献标识码:
A
文章编号:
1672-4291(2011)06-0010-04
基金项目:
国家自然科学基金资助项目(11171197, 11001159); 中央高校基本科研业务费专项资金项目(GK201002012,GK200902049).
Doi:
Application of generalized inverse to the representations of idempotent operators
DOU Yan-ni, DU Hong-ke
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
By using operator block techniques, the representations of idempotent operators are discussed. It is proved that the necessary and sufficient condition for the operator A(BA) B on a Hilbert space to be an orthogonal projection is that PB*B=B*BP, where PB*B|R(P) is an invertible operator on R(P), and PA|R(A*B*) is an invertible operator on R(A*B*) (A denote the Moore-Penrose inverse of A). It is also proved that an idempotent operator P can be represented as the form A(BA) B if and only if PAA*=AA*P*, and an orthogonal projection P can be represented as the form A(BA) B if and only if PAA*=AA*P.
KeyWords:
idempotent; block-operator matrix; Moore-Penrose inverse