自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
解一类线性约束线性变分不等式的神经网络
PDF下载 ()
杜 丽 莉
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
杜丽莉, 女, 副教授, 主要从事生态数学的研究. E-mail: du_li71@yahoo.com.cn.
摘要:
研究了一类线性约束线性变分不等式问题. 通过将其转化为等价的方程组, 提出了求解它的两个神经网络模型. 利用稳定性理论证明了新模型是Liapunov稳定的, 并且全局收敛于原问题的一个精确解. 此外, 在一定的条件下证明了它们的全局指数稳定性. 新模型的规模均与原问题相同, 且参数易于选择, 模拟实验表明它们可行有效.
关键词:
线性变分不等式; 神经网络; 全局指数稳定; 收敛性
收稿日期:
2011-03-16
中图分类号:
O221.2
文献标识码:
A
文章编号:
1672-4291(2011)04-0001-05
基金项目:
国家自然科学基金资助项目(60671063, 10902062).
Doi:
Neural networks for a class of linearly constrained and linear variational inequalities
DU Li-li
(College of Mathematics and Information Science,Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
A class of linearly constrained linear variational inequalities is considered. Two neural networks for solving it are proposed by transforming it into the equivalent equations. The proposed models are proved to be Liapunov stable and globally converge to an solution of the underlying problem. Moreover, the global exponential stability of the proposed models are shown under certain conditions.The size of each proposed models is the same as that of the underlying problems, and the network parameter is easy to be chosen.The feasibility and effectiveness of the proposed neural networks are supported by the simulation experiments.
KeyWords:
linear variational inequality; neural network; global exponential stability; convergence