自然科学版
陕西师范大学学报(自然科学版)
资源与环境科学
丹参赤霉素刺激转录基因SmGAST的克隆及生物信息学分析
PDF下载 ()
强毅,王喆之*
(陕西师范大学 药用资源与天然药物化学教育部重点实验室,西北濒危药材资源开发国家工程实验室, 陕西 西安 710062)
强毅, 男, 讲师,博士, 主要从事植物生物技术研究.E-mail:yqiang@stu.snnu.edu.cn.* 通信作者:王喆之, 男, 教授, 博士研究生导师. E-mail: zzwang@snnu.edu.cn.
摘要:
通过对丹参EST数据库进行BLAST比对,发现一条与GAST基因家族同源性较高的基因序列(CV163373),采用RT-PCR方法从丹参中克隆得到该基因,命名为SmGAST.该基因cDNA序列长406 bp,包含一个303 bp的ORF,编码100个氨基酸残基,推测为GAST基因家族的一个新基因.生物信息学分析表明,SmGAST所编码蛋白的分子量为10.5473 kD,理论等电点为9.01,具有信号肽,为定位于胞外的不稳定类蛋白,具有GAST基因家族所特有的功能结构域.实时定量PCR检测的结果显示,SmGAST在丹参根、茎和叶中均有表达,但主要在叶中表达,茎部的表达量最低.
关键词:
丹参; 赤霉素刺激转录基因; 生物信息学; 表达分析
收稿日期:
2010-03-19
中图分类号:
Q945
文献标识码:
A
文章编号:
1672-4291(2011)02-0064-07
基金项目:
国家“十一五”科技支撑计划项目(2006BAI06A12-04)
Doi:
Cloning and bioinformatics analysis of SmGAST from Salvia miltiorrhiza Bunge
QIANG Yi, WANG Zhe-zhi*
(Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
Gibberellins (GAs) play an important role in many aspects of plant growth and development. GAST (GA Stimulated Transcript) family is one of gene families to be responsive to GAs. The expressed sequence tags of Salvia miltiorrhiza were analyzed using the BLAST of NCBI. One of these sequences (CV163373) showed high homology with GAST gene family. The full-length cDNA sequence of the gene was cloned by PCR and named as SmGAST. It consists of 406 nucleotides, including a 303 bp opening reading frame and encoding a 100 amino acid-peptide. Bioinformatics analysis showed that the calculated molecular mass was 10.5473 kD with theoretical isoelectric point of 901. SmGAST was an unstable protein with signal peptide and directed to the extracellular space. Real-time PCR results showed that the SmGAST expressed in root, stem and leaf. The expression of SmGAST was the most abundant in leaf, and the least in stem.
KeyWords:
Salvia miltiorrhiz Bunge; GA stimulated transcript gene; Bioinformatics; expression analysis