自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
Lukasiewicz模糊命题逻辑中极大相容理论的结构和拓扑刻画
PDF下载 ()
周 红 军
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
周红军,男,讲师,博士,研究方向为模糊逻辑.E-mail:hjzhou@snnu.edu.cn.
摘要:
通过研究Lukasiewicz模糊命题逻辑系统中极大相容理论的基本性质, 证明了每个极大相容理论都是某赋值的核,反过来,每个赋值的核也都是一个极大相容理论. 利用ukasiewicz蕴涵算子的连续性在全体极大相容理论之集上引入了一种Fuzzy拓扑, 证明了该Fuzzy拓扑空间是零维的、良紧的,但不是覆盖式紧的,其分明截拓扑空间是覆盖式紧的、可度量化的.
关键词:
ukasiewicz模糊命题逻辑; 极大相容理论; 满足性定理; 紧致性定理
收稿日期:
2010-08-16
中图分类号:
O142
文献标识码:
A
文章编号:
1672-4291(2011)01-0001-04
基金项目:
国家自然科学基金资助项目(61005046); 陕西省自然科学基础研究计划项目(2010JQ8020).
Doi:
Structural and topological characterizations of maximally consistent theories in ukasiewicz fuzzy propositional logic
ZHOU Hong-jun
(College of Mathematics and Information Science,Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
By means of investigating basic properties of maximally consistent theories in ukasiewicz fuzzy propositional logic, it is proved that each maximally consistent theory is the kernel of some valuation and vice versa, and consequently a structural characterization of maximally consistent theories in this logic is obtained. By virtue of the continuity of ukasiewicz implication operator, a fuzzy topology as well as its cut topology on the set of all maximally consistent theories is introduced. It is proved that this fuzzy topological space is zero-dimensional and nice-compact, but not covering-compact, and its cut space is covering-compact and metrizable.
KeyWords:
ukasiewicz fuzzy propositional logic; maximally consistent theory; satisfiability theorem; compactness theorem