自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
偏序集上的两类序收敛
PDF下载 ()
姚卫1,2,赵彬1*
(1 陕西师范大学 数学与信息科学学院, 陕西 西安 710062;2 河北科技大学 理学院, 河北 石家庄 050018)
姚卫, 男, 讲师,博士, 主要从事格上拓扑学和Domain理论的研究.E-mail: yaowei0516@163.com.* 通信作者:赵彬,男,教授,博士研究生导师.E-mail: zhaobin@snnu.edu.cn.
摘要:
研究了在任意偏序集中网的序收敛和滤子的序收敛的关系,证明了Birkhoff-Frink的网的序收敛和Erné-Gatzke的滤子的强序收敛相互协调,Wolk的网的序收敛和Erné-Gatzke的滤子的序收敛相互协调.如果偏序集是一个格, 则这两种序收敛导出的拓扑一致.引入了序收敛格的定义,证明了序收敛格导出的序拓扑是一个Hausdorff正则空间,序收敛格的有限积是序收敛格,由全体序收敛的完备格构成的偏序集范畴的满子范畴是笛卡儿闭的.
关键词:
滤子; 网; o1-收敛; o2-收敛; 序拓扑; 序收敛格; 笛卡儿闭
收稿日期:
2010-04-30
中图分类号:
O153.1
文献标识码:
A
文章编号:
1672-4291(2010)05-0001-05
基金项目:
国家自然科学基金资助项目(10871121,10926055); 河北省自然科学青年基金项目(A2010000826); 河北省科技计划发展项目(09276158); 河北科技大学基金资助项目(QD200957, XL200821).
Doi:
Two kinds of order convergence on posets
YAO Wei1,2, ZHAO Bin1*
(1 College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China; 2 School of Science, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China)
Abstract:
The relations between the order convergence of nets and filters are studied. It is shown that Birkhoff-Frink′s order convergence is equivalent to Erné-Gatzke′s strong order convergence, and Wolk′s order convergence is equivalent to Erné-Gatzke′s order convergence. These two kinds of order convergence induce the same order topology if the poset is a lattice. The concept of order convergence lattices is introduced. It is shown that the order topology induced by an order convergence lattice is Hausdorff and regular, finite products of order convergence lattices are still order convergence lattices. As a subcategory of the category of posets, the category consisting of all order convergence complete lattices is Cartesian closed.
KeyWords:
filter; net; o1-convergence; o2-convergence; order topology; order convergence lattice; Cartesian closed