自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
非线性Volterra延迟积分微分方程Runge-Kutta方法的散逸性
PDF下载 ()
祁锐,何汉林
(海军工程大学 理学院, 湖北 武汉 430033)
祁锐,男,讲师,研究方向为微分方程数值解.E-mail: qqr0425@163.com.
摘要:
考虑了非线性Volterra延迟积分微分方程Runge-Kutt方法的散逸性.当积分用PQ求积公式逼近时,得到了(k,l)-代数稳定的Runge-Kutt方法的散逸性;证明了:代数稳定且DJ-不可约的Runge-Kutt方法是有限维散逸的;当k<1时,(k,l)-代数稳定的Runge-Kutt方法是无限维散逸的.
关键词:
Volterra 延迟积分微分方程; Runge-Kutta方法; 散逸性; 代数稳定性
收稿日期:
2010-01-08
中图分类号:
O241.8
文献标识码:
A
文章编号:
1672-4291(2010)04-0018-05
基金项目:
国家自然科学基金资助项目(60974136)
Doi:
Dissipativity of Runge-Kutta method for nonlinear Volterra delay-integral-differential equations
QI Rui, HE Han-lin
(School of Science, Naval University of Engineering, Wuhan 430033, Hubei, China)
Abstract:
The dissipativity of Runge-Kutta method nonlinear Volterra delay-integral-differential equations is discussed. The dissipativity of (k,l)-algebraically stable Runge Kutta method is discussed when the intergration term is approximated by PQ formula. It is proved that an algebraically stable and DJ-irreducible Runge-Kutta method is dissipative for finite dimensional dynamical systems, a (k,l)-algebraically stable Runge-Kutta method is dissipative for infinite dimensional systems if k
KeyWords:
Volterra delay-integro-differential equation; Runge-Kutta method; dissipativity; algebraic stability