自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
基于线性码上的动态可验证的秘密共享方案
PDF下载 ()
郭玉娟,李志慧*,赖红
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
郭玉娟,女,硕士研究生,研究方向为有限域和密码学.* 通信作者:李志慧,女,副教授,博士.E-mail: snnulzh@yahoo.com.cn.
摘要:
提出了极小线性码和极小线性码链的定义,对极小线性码[n,k;q]的一类特殊子码,通过删除其某一分量上的码元,构造出一类新的极小线性码.证明了:若C是一个[n,k;q]极小线性码,且当C⊥的极小距离>2时,由上述方法可构造出一个极小线性码链.基于这个极小线性码链,给出一种动态的可验证的秘密共享体制, 与以往的(t,n)门限秘密共享方案相比,该方案不仅有更丰富的接入结构,且有较高的安全性和实用性.
关键词:
极小线性码; 极小线性码链; 动态的秘密共享方案; 离散对数密码体制; 可验证性
收稿日期:
2009-11-30
中图分类号:
TP309
文献标识码:
A
文章编号:
1672-4291(2010)04-0007-06
基金项目:
国家自然科学基金资助项目(10571112); 陕西省自然科学基金资助项目(2007A06)
Doi:
A novel dynamic and verifiable secret sharing scheme based on linear codes
GUO Yu-juan, LI Zhi-hui*, LAI Hong
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
Give out minimal linear code is defined, for a class of special subcode of minimal linear codes [n,k;q], a new class of minimal linear codes is constructed by deleting one coordinator of all code words. Furthermore, we define minimal linear code chain and prove that if C is an [n,k;q] minimal linear code and the minimal distance of C⊥ is larger than 2, then a minimal linear code chain can be constructed by this method. Based on the minimal linear code chain, a novel dynamic and verifiable secret sharing scheme is proposed. Compared with the former (t,n) threshold secret-sharing scheme, the proposed scheme not only has more interesting access structure, but also is of higher security and practicality.
KeyWords:
minimal linear code; minimal linear code chain; dynamic secret sharing scheme; discrete-logarithm cryptosystem; verification