自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
算子一致可逆性的判定
PDF下载 ()
张鹤佳,赵玲玲,曹小红
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
张鹤佳, 女,硕士研究生,研究方向为算子理论.* 通讯作者:曹小红, 女, 副教授, 博士.
摘要:
研究了Hilbert空间上有界线性算子的一致可逆性. 利用M.Mbekhta介绍的两个子空间, 给出算子具有一致可逆性的充要条件; 对于算子矩阵的一致可逆性, 若d(A)=n(B)且R(B)为闭集, 则存在C∈B(K, H)使得MC为一致可逆算子当且仅当下列之一成立: (1) A和B均为可逆算子; (2) d(A)≠0且n(B)≠0;(3) d(B)≠0且n(A)≠0, 其中n(A)和d(A)分别表示算子A的零度和亏数. 定义了一种与一致可逆性有关的新的谱集σ1(·),得到了该谱集的谱映射定理: 设A为Hilbert空间上的有界线性算子, 则谱集σ1(A)满足谱映射定理当且仅当σ1(A)=.
关键词:
谱; 下有界算子; 谱映射定理
收稿日期:
2009-06-17
中图分类号:
O177.2
文献标识码:
A
文章编号:
1672-4291(2009)06-0011-04
基金项目:
国家自然科学基金资助项目(10726043); 教育部新世纪优秀人才支持计划资助项目(2006)
Doi:
The judgement of consistent invertibility of operators
ZHANG He-jia, ZHAO Ling-ling, CAO Xiao-hong*
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
The consistent invertibility of operators on a Hilbert space is discussed. By means of two spaces introduced by M. Mbekhta, a sufficient and necessary condition for an operator to be consistent invertible is given. Also, the property of consistent invertibility of an upper triangular operator matrix is considered, it is proved that if d(A)=n(B) and R(B) is closed, then there exists C∈B(K, H) such that MC is consistent in invertible if and only if one of the following cases occurs: (1) both A and B are invertible; (2) d(A)≠0 and n(B)≠0;(3) d(B)≠0 and n(A)≠0, where n(A) and d(A) denote the nullity and the defect of A, respectively. Also, a new spectrum corresponding to the consistent invertibility is defined and the spectral mapping theorem for this new spectrum is studied. It is proved that if A is a bounded linear operator on a Hilbert space, then the spectral mapping theorem holds for σ1(A) if and only if σ1(A)=.
KeyWords:
spectrum; bounded below operator; spectral mapping theorem