自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
基于边缘特征点的分级立体匹配算法研究
PDF下载 ()
李刚1,李竹林2,赵宗涛1
((1 西北大学 信息科学与技术学院, 陕西 西安 710069; 2 延安大学 数学与计算机科学学院, 陕西 延安 716000)
李刚,男,博士研究生,研究方向为计算机软件与理论.
摘要:
提出了一种基于边缘特征点的分级立体匹配算法.其基本思想是,首先提取双目图像对的边缘特征点,然后对特征点的梯度不变性与奇异值特征不变性进行分析,建立基于不变量特征的二级匹配算法,求解基础矩阵.在基础矩阵的指导下,完成三级立体匹配.模拟结果表明,该算法能使匹配精度由58.3%提高到73.2%,而且算法简单、实用,对目标的识别、跟踪以及三维表面恢复与重建等均具有重要的价值.
关键词:
边缘特征点; 立体匹配; 梯度; 奇异特征值
收稿日期:
2009-03-26
中图分类号:
TP391.41
文献标识码:
A
文章编号:
1672-4291(2009)05-0020-04
基金项目:
中国博士后基金资助项目(080431401)
Doi:
Research on gradation stereo matching algorithm based on the edge feature points
LI Gang1, LI Zhu-lin2, ZHAO Zong-tao1
(1 College of Information Sicence and Technology, Northwest University, Xi′an 710069, Shaanxi, China; 2 College of Mathematics and Computer Science, Yan′an University, Yan′an 716000, Shaanxi, China)
Abstract:
A gradation stereo matching algorithm based on the edge feature points is proposed. Its basic idea is that, the edge feature points of a pair of images are first extracted, and then gradient invariability and singular eigenvalue invariability are analyzed, two-grade stereo matching method is build, foundation matrix is solved further, and three-grade stereo matching algorithm is finished by foundation matrix guidance. The result indicates that the algorithm can improve matching precision, from 58.3% to 73.2%, it is simple and utility, and it is important for object recognition, tracking, and three-dimension reconstruction.
KeyWords:
edge feature point; stereo matching; gradient; singular eigenvalue