自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
关于矩阵值Lipschitz代数的子代数研究
PDF下载 ()
陈峥立,曹怀信
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
陈峥立,男,讲师,博士,主要从事算子代数与量子计算研究.
摘要:
运用算子论与算子代数的方法, 讨论了Lipschitz代数Lα(K, Mn(F))和lα(K, Mn(F))上的几种范数的关系; 证明了它们是C(K, Mn(F))的含单位的、正则的、自伴的和逆闭的*-子代数;得到了(lα(K,Mn(F)), ‖·‖α)是(Lα(K, Mn(F)), ‖·‖α)的含单位的、逆闭的子代数.
关键词:
Lipschitz代数; 子代数; 范数
收稿日期:
2009-03-30
中图分类号:
O177.1
文献标识码:
A
文章编号:
1672-4291(2009)05-0007-04
基金项目:
国家自然科学基金资助项目(10571113, 10871224,10826081)
Doi:
Researches on subalgebras of matrix-valued Lipschitz algebras
CHEN Zheng-li, CAO Huai-xin*
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
Using methods of operator theory and operator algebra, some relations of several norms on the Lipschitz algebras Lα(K, Mn(F)) and lα(K, Mn(F)) are discussed and it is proved that they are all unital regular *-subalgebras of the C*-algebra C(K,Mn(F)), it is obtained that (lα(K, Mn(F)), ‖·‖α) is a closed and unital inverse-closed subalgebra of (Lα(K, Mn(F)), ‖·‖α).
KeyWords:
Lipschitz algebra; subalgebra; norm