自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
命题逻辑系统中理论的真度概念及其应用
PDF下载 ()
王国俊1,2,高香妮1
(1 陕西师范大学 数学与信息科学学院, 陕西 西安 710062; 2 上海市高可信计算重点实验室, 华东师范大学, 上海 200062)
王国俊,男,教授,博士研究生导师,主要从事不确定性推理方面的研究.
摘要:
首次在命题逻辑系统中引入理论的真度概念,将公式的真度推广为公式集的真度,从而简化了发散度的概念;进一步得出:当理论Γ相容时,理论的真度与相容度之间的关系为η(Γ)=(1+τ(Γ))/2;在命题逻辑系统C2中,将理论Γ1和Γ2分为六类,分别讨论了各类中理论Γ1、Γ2与Γ1∪Γ2的真度之间的关系.
关键词:
理论的真度; 相容度; 发散度; 有限; 可数
收稿日期:
2009-04-05
中图分类号:
O141.1
文献标识码:
A
文章编号:
1672-4291(2009)05-0001-06
基金项目:
国家自然科学基金资助项目(10771129); 陕西师范大学211工程建设基金资助项目
Doi:
Truth degree of a logic theory in propositional logic system and its application
WANG Guo-jun1,2, GAO Xiang-ni1
(1 College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China; 2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China)
Abstract:
The concept of truth degree of a logic theory is proposed firstly in the present paper, which generalizes the truth degree of a formula to that of a set of formulas. The concept of divergence degree can be simplified thereby. Moreover, the relation η(Γ)=(1+τ(Γ))/2 between truth degree and consistency degree of a given logic theory Γ is obtained when Γ is consistent. Finally, in the propositional logic system C2, theories Γ1 and Γ2 are divided into six categories, in which the relation of truth degrees of logic theories Γ1, Γ2 and Γ1∪Γ2 are compared, respectively.
KeyWords:
truth degree of a logic theory; consistency degree; divergence degree; finite; countable