自然科学版
陕西师范大学学报(自然科学版)
物理学
基于支持向量机的快速高光谱分类研究
PDF下载 ()
刘江永1,王大明2
(1 湘潭大学 信息工程学院, 湖南 湘潭 411105;2 空军驻洛阳地区代表室, 河南 洛阳 471009)
刘江永,男,高级工程师,主要从事计算机应用研究.E-mail:ljyabc2008@yahoo.com.cn.
摘要:
提出了一种基于支持向量机的快速高光谱分类方法.首先采用基于主成分分析和Bhattacharyya距离的方法进行特征降维,然后通过二叉树的支持向量机(Binary tree of SVMs, BTS)来减少一次分类所需的两类支持向量机个数,最后采用简化支持向量技术进一步减少支持向量的数量.实验采用真实高光谱数据,并与4种其他方法进行比较.结果表明,该方法能有效地加快分类速度.
关键词:
高光谱分类; 支持向量机; 特征降维; 计算复杂度
收稿日期:
2008-11-20
中图分类号:
TP391
文献标识码:
A
文章编号:
1672-4291(2009)04-0043-05
基金项目:
湖南省自然科学基金资助项目(66JJ50081)
Doi:
Fast classification of hyperspectral data based on support vector machines
LIU Jiang-yong1, WANG Da-ming2
(1 College of Information and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China;2 Representative Office, Air Force in Luoyang Region, Luoyang 471009, Henan, China)
Abstract:
Based on the support vector machines (SVMs), a fast hyperspectral data classification method is proposed. First, a feature reduction method based on principal component analysis (PCA) and Bhattacharyya distance is used. Then, the binary tree of SVMs (BTS) is adopted to reduce the number of binary SVMs for one classification. Finally, the simplifying support vector solution is utilized to further reduce the number of support vectors (SVs). The experiment adopted real hyperspectral data set. Compared with the other four methods, the results demonstrate that the proposed method can achieve a fast classification effectively.
KeyWords:
hyperspectral data classification; support vector machine; feature reduction; computational complexity