自然科学版
陕西师范大学学报(自然科学版)
物理学
Quesne环状球谐振子势场中的赝自旋对称性
PDF下载 ()
陈发堂1,薛琳娜2,张民仓3
(1 上海电力大学 物理实验中心, 上海 200090; 2 延安大学 物理学系, 陕西 延安 716000; 3 陕西师范大学 物理学与信息技术学院, 陕西 西安 710062)
陈发堂,男,副教授,主要从事实验物理和基础物理研究.
摘要:
应用二分量方法,求解了Quesne环状球谐振子势场中1/2自旋粒子满足的Dirac方程,Dirac哈密顿量由标量和矢量Quesne环状球谐振子势构成.在Σ=S(r)+V(r)=0的条件下,得到了Dirac 旋量波函数下分量的束缚态解和能谱方程, 显示出Quesne环势场中的赝自旋对称性.讨论了束缚态波函数和能谱方程的有关性质.
关键词:
Quesne 势; Dirac 方程; 赝自旋对称性; 束缚态
收稿日期:
2008-09-10
中图分类号:
O4311
文献标识码:
A
文章编号:
1672-4291(2009)02-0038-04
基金项目:
Doi:
Quesne ring-shaped spherical harmonic oscillator potential and pseudospin symmetry
CHEN Fa-tang1, XUE Lin-na2, ZHANG Min-cang3
(1 Center of Physics Experement,Shanghai University of Electric Power, Shanghai 200090, China; 2 Department of Physics,Yan′an University,Yan′an 716000, Shaanxi, China; 3 College of Physics and Information Technology, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
The Quesne ring-shaped spherical harmonic oscillator potential is studied for spin 1/2- particles based on the Dirac equation, the Dirac Hamiltonian contains a scalar and a vector Quesne ring-shaped harmonic oscillator potentials. Setting Σ=S(r)+V(r)=0, the bound state solutions and eigenenergies are obtained with the two-component approach. The result shows the pseudospin symmetry is existed in the Quesne ring-shaped harmonic oscillator potential.The general properties of the both ring-shaped spherical harmonic oscillator potential and ring-shaped non-spherical harmonic oscillator potential are discussed.
KeyWords:
Quesne potential; Dirac equation; pseudospin symmetry; bound state