自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
一类带交叉扩散项的捕食模型正解的存在性
PDF下载 ()
李景荣1, 李艳玲1*, 闫焱2
(1 陕西师范大学 数学与信息科学学院, 陕西 西安 710062;2 西安文理学院 数学系, 陕西 西安 710065)
李景荣,女,硕士研究生,研究方向为反应扩散方程理论及其应用.
摘要:
研究了一类具有扩散和交叉扩散的Holling-Tanner捕食-食饵生态模型的正解.交叉扩散项的生物意义是食饵者通过自身保护的方式抵制来自捕食者的侵害.利用最大值原理和Harnack不等式给出了此模型正解的先验估计.进一步利用积分性质讨论了非常数正解的不存在性,相应地证明了当扩散系数d1、d2大于特定正常数,且交叉扩散系数d3有界时,此模型没有非常数正解.利用度理论讨论了非常数正解的存在性,从而得出若此模型的线性化算子正特征值的代数重数是奇数,且交叉扩散系数d3不小于给定正常数时,此模型至少存在一个非常数正解.
关键词:
交叉扩散项;Holling-Tanner捕食-食饵模型;正解;存在性
收稿日期:
2008-05-15
中图分类号:
O175.26
文献标识码:
A
文章编号:
1672-4291(2009)01-0020-05
基金项目:
国家自然科学基金资助项目(10571115);陕西省自然科学基础研究计划项目(2007A11)
Doi:
The existence of the positive solutions for a class of the prey-predator model with cross-diffusion
LI Jing-rong1, LI Yan-ling1*, YAN Yan2
(1 College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China;2 Department of Mathematics, Xi′an University of Arts and Science, Xi′an 710065, Shaanxi, China)
Abstract:
The positive solutions are discussed for a class of the Holling-Tanner prey-predator ecological model with diffusion and cross-diffusion. The biological implication of cross-diffusion means that the prey species exercise a self-defense mechanism to protect themselves from the attack of the predator.By means of maximum principle and Harnack inequality, the prior estimate to the positive solutions of the model is given. Furthermore,by using the integral property, the non-existence of the non-constant positive solutions is considered, and it is proved that the model has no non-constant positive solution when the diffusion coefficient d1 and d2 are larger than the special positive constants and cross-diffusion coefficient d3 is bounded. Lastly the degree theory is utilized for discussing the existence of the non-constant positive solutions, therefore, we will obtain that the model has at least one non-constant positive solution if the algebraic multiplicity of the positive eigenvalue of the linearized operator of the model is odd and cross-diffusion coefficient d3 is not less than some given positive constant.
KeyWords:
cross-diffusion;Holling-Tanner prey-predator model;positive solution;existence