自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
逻辑系统n中的真度、发散度与相容度的分布
PDF下载 ()
于海1,2,詹婉荣1,2,王国俊1*
(1 陕西师范大学 数学与信息科学学院, 陕西 西安 710062;2 洛阳师范学院 数学科学学院, 河南 洛阳 471022)
于海,男,硕士研究生,研究方向为不确定性推理.
摘要:
研究了n值ukasiewicz命题逻辑系统n中公式的真度、理论的发散度与相容度的分布问题.令H={k/nm|k=0,…,nm;m=1,2,…}, 利用McNaughton函数证明了对任意k/nm∈H, 都有公式A,使得A的真度为k/nm, 从而全体公式的真度值之集在[0,1]中稠密. 又由真度值之集的稠密性和系统n的广义演绎定理证明了理论的发散度取值之集为单位区间[0,1]. 最后由理论的相容度与发散度的关系得到了理论的相容度取值之集为{0}∪[1/2,1].
关键词:
逻辑系统n; 真度; 发散度; 相容度
收稿日期:
2008-03-26
中图分类号:
O141.1
文献标识码:
A
文章编号:
1672-4291(2008)05-0006-04
基金项目:
国家自然科学基金资助项目(10771129); 陕西师范大学211工程建设基金资助项目
Doi:
Distributions of truth degrees, divergent degrees and consistency degrees in the logic system n
YU Hai1,2, ZHAN Wan-rong1,2, WANG Guo-jun1*
(1 College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China; 2 College of Mathematics and Science, Luoyang Normal College, Luoyang 471022, Henan, China)
Abstract:
The distributions of truth degrees, divergent degrees and consistency degrees in the n-valued ukasiewicz propositional logic system n are discussed. Letting H={k/nm|k=0,…,nm;m=1,2,…}, it is proved by means of McNaughton function that there exists a formula A with the truth degree k/nm. Thus, the set of all truth degrees of formulas is dense in [0,1]. It is also proved that the set of all divergent degrees of theories is the unit interval [0,1] by the density of truth degrees of formulas and generalized deduction theorem of system n. According to the relation between consistency degrees and divergent degrees, it is induced that the set of all consistency degrees of theories is {0}∪ [1/2,1].
KeyWords:
logic system n; truth degree; divergent degree; consistency degree