自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
p(t)-Laplace方程组多点边值问题解的存在性
PDF下载 ()
张启虎1,2,杨静3,崔志会3
(1 陕西师范大学 数学与信息科学学院, 陕西 西安 710062; 2 徐州师范大学 数学系, 江苏 徐州 221116; 3 郑州轻工业学院 数学与信息科学系, 河南 郑州 450002)
张启虎,男,副教授,博士,主要从事p(x)-Laplace 方程的研究.
摘要:
利用Leray-Schauder度方法研究一维p(t)-Laplace方程组多点边值问题解的存在性.当非线性项f(t,u)关于u满足次p-次增长条件时,证明了p(t)-Laplace方程组多点边值问题解的存在性;如果非线性项f(t,u)=σ(t)|u|q(t)-2u+ρ(t)并且关于u满足超p+次增长条件时,证明了p(t)-Laplace方程组多点边值问题当|ρ|0+|e|充分小时解的存在性.
关键词:
p(t)-Laplace算子; Leray-Schauder 度; 不动点
收稿日期:
2007-06-21
中图分类号:
O175.25
文献标识码:
A
文章编号:
1672-4291(2008)01-0019-03
基金项目:
国家自然科学基金资助项目(10701066; 10671084); 河南省教育厅自然科学基金资助项目(2007110037)
Doi:
Existence of solutions for the multipoint boundary value problems for p(t)-Laplacian system
ZHANG Qi-hu1,2, YANG Jin3, CUI Zhi-hui3
(1 College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China; 2 Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, Jiangsu, China;3 Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China)
Abstract:
Investigates the existence of solutions for multipoint boundary value problems for the one dimensional p(t)-Laplacian system via Leray-Schauder degree. When the nonlinear term f(t,u) satisfies sub-p- growth conditions with respect to u, the existence of solutions for this problem is proved. If the nonlinear term f(t,u)=σ(t)|u|q(t)-2u+ρ(t) and satisfies super-p+ growth conditions with respect to u, the sufficient conditions for the existence of solutions for this problem is obtained, when |ρ|0+|e| is small enough.
KeyWords:
p(t)-Laplacian; Leray-Schauder degree; fixed point