自然科学版
陕西师范大学学报(自然科学版)
专题研究
复合矩阵的Lwner偏序与特征值不等式
PDF下载 ()
尹小艳,刘三阳,房亮
(西安电子科技大学 应用数学系, 陕西 西安 710071)
尹小艳,女,博士研究生,研究方向为矩阵理论与最优化.
摘要:
讨论了存在Lwner偏序的两矩阵的k级复合矩阵的关系,并将复合矩阵与广义Schur补结合起来,研究矩阵广义Schur补的复合矩阵与复合矩阵广义Schur补之间的Lwner偏序,得到了Ck[(A*BA)/α]≤[Ck(A/α)]*Ck[B(β′)]Ck(A/α)等结果,并给出相关的特征值与奇异值不等式,推广和改进了近期的相关结果.
关键词:
复合矩阵; 广义Schur补; Lwner偏序; Moore-Penrose广义逆; 特征值
收稿日期:
2006-11-13
中图分类号:
O151.21
文献标识码:
A
文章编号:
1672-4291(2007)03-0013-03
基金项目:
国家自然科学基金资助项目(60574075)
Doi:
Lwner partial order and eigenvalue inequalities for compound matrices
YIN Xiao-yan, LIU San-yang, FANG Liang
(Department of Applied Mathematics, Xi′dian University, Xi′an 710071, Shaanxi, China)
Abstract:
The Lwner partial order for compound matrices are considered. Combing generalized Schur complements with compound matrices, the Lwner partial order for compound matices of generalized Schur complements is studied. Some inequalities, such as Ck[(A*BA)/α]≤[Ck(A/α)]*Ck[B(β′)]Ck(A/α) are obtained.Several eigenvalue inequalities of compound matrices are also offered, which generalize some recent results.
KeyWords:
compound matrix; generalized Schur complement; Lwner partial order; Moore-Penrose generalized inverse; eigenvalue