自然科学版
陕西师范大学学报(自然科学版)
专题研究
拓扑与Cantor三分集
王国俊1,王伟2,宋建社3
(1 陕西师范大学 数学与信息科学学院, 陕西 西安 710062; 2 西安财经学院 信息与教育技术中心, 陕西 西安 710062;3 西安高技术研究所, 陕西 西安 710025)
王国俊,男,教授,博士研究生导师,主要从事不确定性推理、格上拓扑学研究.命题逻辑中极大和谐理论之集上的
摘要:
从结构上清楚地描述了极大和谐理论的构造,证明了一个理论是极大和谐的当且仅当它是文字序列的逻辑闭包;在全体极大和谐理论之集上通过自然的方式引入了一种紧Hausdorff拓扑,证明了所得拓扑空间与Cantor三分集同胚.作为应用,给出了命题逻辑系统完备性的一个简单证明.
关键词:
数理逻辑; 极大和谐理论; 紧Hausdorff标准拓扑; Cantor三分集; 完备性
收稿日期:
2007-04-09
中图分类号:
O142
文献标识码:
A
文章编号:
1672-4291(2007)02-0001-05
基金项目:
国家自然科学基金重点资助项目(10331010)
Doi:
Topology on the set of maximal consistent propositional theories and the Cantor ternary set
WANG Guo-jun1, WANG Wei2, SONG Jian-she3
(1 College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China; 2 Center of Information and Educational Technologies, Xi′an University of Finance and Economics, Xi′an 710061, Shaanxi, China;3 Xi′an High-Technical Institute, Xi′an 710025, Shaanxi, China)
Abstract:
Clearly described the structure of the set consisting of all maximal consistent propositional theories, and it is proved that a logic theory is maximal consistent if and only if it is a closure of a sequence of literals. In a natural way, a compact Hausdorff topology is introduced, and it is proved that the obtained topological space is homeomorphic to the Cantor ternary set. As an application, a simple proof of a complete theorem is proposed.
KeyWords:
mathematical logic; maximal consistent theory; compact Hausdorff standard topology; Cantor ternary set; completeness