自然科学版
陕西师范大学学报(自然科学版)
专题研究
广义射影神经网络的指数稳定性
PDF下载 ()
高兴宝,董宁
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
高兴宝,男,教授, 博士研究生导师,主要从事神经网络、最优化理论与算法的研究.
摘要:
研究了一类广义射影神经网络,分析了它的稳定性和收敛性.当映射和非对称时,分别定义了恰当的能量函数, 在适当的条件下证明了该网络的全局收敛性和指数稳定性. 与已有结果相比,文中的稳定性条件并不需要映射的可微性及映射和的对称性. 理论分析和数值实例表明所得结果适用于非单调问题,而且给定的条件易于验证.由于该网络可求解一大类优化和平衡问题,因此文中结论具有一定的理论价值和实际意义.
关键词:
广义射影神经网络; 广义变分不等式; 全局收敛性; 指数稳定性
收稿日期:
2006-05-10
中图分类号:
O221.2; O175.13
文献标识码:
A
文章编号:
1672-4291(2007)01-0005-04
基金项目:
国家自然科学基金资助项目(60671063);陕西省科学技术计划项目(2006A02)
Doi:
Exponential stability of a general projection neural network
GAO Xing-bao, DONG Ning
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
A general projection neural network is considered, and its stability and convergence are analyzed. When the sum of the underlying mappings is asymmetric, global convergence and exponential stability of the general projection neural network are strictly shown under mild conditions by defining the suitable energy functions, respectively. Compared with the existing results for this network, the given stability conditions do not require the differentiability of the mappings, and the symmetric of the sum of the mappings. Theoretical analysis and illustrative examples show that the obtained results can be applied to some non-monotone problems, and the given conditions can be easily checked. Since this network can be used to solve a broad class of optimization and equilibrium problems, the obtained results are significant in both theory and application.
KeyWords:
general projection neural network; general variational inequality; global convergence; exponential stability