自然科学版
陕西师范大学学报(自然科学版)
专题研究
一类未搅拌Chemostat模型正解的存在性与稳定性分析
PDF下载 ()
吴建华,王娜
(陕西师范大学 数学与信息科学学院, 陕西 西安 710062)
吴建华,男,教授,博士研究生导师,主要从事偏微分方程理论的研究.
摘要:
研究了一类单营养物单物种的未搅拌Chemostat模型正解的分歧及其稳定性.利用特征值和单重特征值的局部分歧理论,以物种u的死亡率k作为分歧参数,证明了系统在半平凡解(z,0)附近出现分支,得到了该模型存在正平衡解的充分条件,并运用线性算子的扰动理论和分歧解的稳定性理论,说明了此平衡解在一定条件下是稳定的.
关键词:
抛物型方程; 恒化器; 局部分歧; 稳定性
收稿日期:
2006-06-14
中图分类号:
O175.26
文献标识码:
A
文章编号:
1672-4291(2007)01-0001-04
基金项目:
国家自然科学基金资助项目(10571115)
Doi:
The existence and stability of the solution of a class of unstirred chemostat model
WU Jian-hua, WANG Na
(College of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
The bifurcation and the stability of the nonnegative solution of an unstirred chemostat model with simple population are discussed. The death rate k is treated as bifurcation parameter, and the bifurcation from the semi-trivial solution (z,0) is obtained by using the theory of eigenvalues and local bifurcations. A sufficient condition for the existence of positive steady-state solutions is given. The stability of this solution is obtained by using perturbation theory of linear operators and stability theory of bifurcation solutions.
KeyWords:
parabolic equation; chemostat; local bifurcation; stability