自然科学版
陕西师范大学学报(自然科学版)
专题研究
集值逆Superpramart的逆上鞅逼近
PDF下载 ()
李高明1,赵辉2
(1 武警工程学院 数学教研室, 陕西 西安 710086;2 陕西师范大学 民族教育科技研究中心, 陕西 西安 710062)
李高明,男,教授,主要从事概率论方面的研究.
摘要:
假定(X,‖·‖)为实可分的Banach空间,X*为其对偶空间,(Ω,A,P)为完备的概率空间,{Bn,n≤-1}为上升子σ-域族.讨论了随机集族本性上确界的性质,给出了集值逆Superpramart的逆上鞅逼近及集值逆上鞅在Kuratowski意义下的收敛定理.以此为基础,利用支撑函数证明了集值逆Superpramart在Kuratowski意义与Kuratowski-Mosco意义下的收敛定理,解决了集值逆Superpramart的收敛性问题.
关键词:
集值逆Superpramart; 集值逆上鞅; 随机集; Kuratowski-Mosco收敛
收稿日期:
2005-05-12
中图分类号:
O211.6
文献标识码:
A
文章编号:
1672-4291(2006)04-0025-04
基金项目:
国家自然科学基金资助项目(60274055)
Doi:
Set-valued inverse supermartingale approximation forset-valued inverse superpramart
LI Gao-ming1, ZHAO Hui2
(1 Department of Mathematics, Technical College of Armed Police Force, Xi′an 710086; 2 Research Center of Ethnic Education and Science and Technology, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
Let (X,‖·‖) be a real separable Banach space with the dual X*, let (Ω,A,P) be a complete probability space, {Bn,n≤-1} be an increasing family of subfields of A. Firstly, some properties of random essential supremum are discussed, set-valued inverse superpramart approximation and set-valued inverse supermartingale convergence theorem in the sense of Kuratowski are provided, respectively. Lastly, set-valued inverse superpramart convergence theorem in the senses Kuratowski and Kuratowski-Mosco are proved, respectively.
KeyWords:
set-valued inverse superpramart; set-valued inverse supermartingale; random set; Kuratowski-Mosco convergence