自然科学版
陕西师范大学学报(自然科学版)
专题研究
元代朱世杰的高次招差术研究
PDF下载 ()
张 惠 民
(陕西师范大学 学报编辑部, 陕西 西安 710062)
张惠民,男,编审,主要从事中国数学史、科技传播学的研究.
摘要:
高次招差术是元代数学家朱世杰的重要成果,《四元玉鉴》中的“如象招数”门共有5问,均是招差问题,实际上是属于高阶等差级数求和,其求和是通过招差公式(即内插法公式)进行的.经研究验算,该5问都可以用同一公式计算求得,朱世杰在这里应用了四次及五次等间距内插公式,并且对此类问题有了一个比较系统和普遍的解法.
关键词:
中国数学史; 朱世杰; 招差术; 内插公式; 高阶等差级数; 《四元玉鉴》
收稿日期:
2006-04-15
中图分类号:
O112; O2413
文献标识码:
A
文章编号:
1672-4291(2006)03-0019-04
基金项目:
Doi:
A study on the Zhu Shijie′s high degree “Zhaocha” method in Yuan Dynasty
ZHANG Hui-min
(Editorial Department of Journal, Shaanxi Normal University, Xi′an 710062, Shaanxi, China)
Abstract:
Zhu Shijie is one of the famous mathematicians in Yuan Dynasty and one of his major contributions to mathematics is the high degree “Zhaocha” method, a numerical method of finite difference. In his book Siyuan Yujian, the section of “Ruxing Zhaoshu” discussed five problems belonging to the “Zhaocha” problems. Actually, the study of these problems is to find the sums of arithmetic series of higher order and Zhu Shijie obtained the results by using “Zhaocha” formulas which indeed are the interpolation formulas. It is proved that these five problems can be solved by a identical formula, while Zhu Shijie used the interpolation formulas of four and five degrees with equally-spaced steps. It is shown that Zhu Shijie′s study established a general method for these problems systematically.
KeyWords:
history of Chinese mathematics; Zhu Shijie; Zhaocha method; interpolation formula; arithmetic series of higher order; Siyuan Yujian