自然科学版
陕西师范大学学报(自然科学版)
数据挖掘专题
基于时序聚类和关联规则挖掘的气化炉操作参数优化方法
PDF下载 ()
田春华*,崔鹏飞,刘家扬,兰晟,李闯
(北京工业大数据创新中心有限公司,北京100083)
田春华,男,北京工业大数据创新中心首席数据科学家,研究方向为工业大数据分析。E-mail: tianchunhua@k2data.com.cn
摘要:
煤气化过程的操作参数直接影响有效气体产率,操作参数优化有重要的经济价值。然而煤气化是一个长稳过程,具有大惯性、长期稳态、工况时间不等长、来料抽检频度低等特点,对机器学习算法提出了很多挑战。为此,本文基于Mean-variance的ChangePoint算法,对状态量、控制量和产出指标量分别进行时序切片,对不等长的子序列进行聚类,构建典型的多变量时序模式;同时,采用GMM算法对来料品质进行聚类。将操作参数优化分为离线静态优化和在线动态优化两个子问题,在给定的来料品质类别下,通过关联规则学习,获得给定状态下最佳的静态操作参数;在线动态优化建模为关联规则挖掘问题,即将来料品质、当前状态、产出效果、操作参数作为左条件,将未来一段时间的产出效果作为右条件,从而获得最佳的动态调整策略。通过3台气化炉27个月历史数据的实验,预估有效气体产率可提升1.38%,验证了基于多时序聚类和关联规则挖掘的数据驱动方式在煤气化操作参数优化中的可行性。
关键词:
德士古气化炉;时序切片;序列规则挖掘;操作参数优化
收稿日期:
2020-11-12
中图分类号:
TP391
文献标识码:
A
文章编号:
1672-4291(2021)01-0061-07
基金项目:
2018年工业互联网创新发展工程(平台方向)工业互联网平台试验测试环境建设项目(石油化工行业);国家重点研发计划项目(2018YFB1700605)
Doi:
Operational parameter optimization of coal gasifier based on time series clustering and association rule mining
TIAN Chunhua*,CUI Pengfei,LIU Jiayang,LAN Sheng,LI Chuang
(Beijing Innovation Center for Industrial Big Data, Beijing 100083,China)
Abstract:
In Texaco water-coal-slurry gasification process, operational parameter has direct impact on effective gas yields. Big data opens a new opportunity to machine learning models in operational parameter optimization. However, gasification is a multivariate-coupled stable process with big inertia. The incoming quality (ICQ) inspection is sparse. Considering these characteristics, mean and variance based time series segmentation is proposed to extract stable subsequences. And multi-variate temporal patterns are obtained by clustering over these subsequences′ feature space. GMM (Gaussian mixture model) is applied to divide ICQ into few categories. Under a given ICQ category, static control policies are obtained by Apriori association rule mining. Considering time lags between control parameter change and output improvement, dynamic control policy problem can also be formulated as an association rule mining problem, by including future results as the RHS(right hand side), and considering the average ICQ during the time lag in the LHS(left hand side). The approach is verified over a 27 months dataset of 3 gasifiers. The expected improvement of CO and H2 gas yields is around 1.38%. Time series clustering and association rule mining approach is a feasible method in coal gasifier operational parameter optimization.
KeyWords:
Texaco water-coal-slurry gasification;time series segmentation; sequential pattern mining; control parameter optimization