自然科学版
陕西师范大学学报(自然科学版)
数据挖掘专题
基于双向GRU和CNN的药物相互作用关系抽取
PDF下载 ()
龚乐君1,2*,刘晓林1,2 ,高志宏3, 李华康1,4,5
(1 南京邮电大学 计算机学院、软件学院、网络空间安全学院,江苏 南京 210023;2 江苏大数据安全与智能处理重点实验室,江苏 南京 210023;3 浙江省智慧医疗工程技术研究中心,浙江 温州 325035;4 自然资源部 城市国土资源监测与仿真重点实验室,广东 深圳 518034;5 苏州派维斯信息科技有限公司,江苏 苏州 215011)
龚乐君,女,副教授,博士,主要从事数据与文本挖掘、生物医学信息处理的研究。E-mail:glj98226@163.com
摘要:
不同药物由于药效动力学和药代动力学的差异可能会产生不可预知的副作用,甚至威胁患者的生命安全。在信息技术飞速发展及指数级生物医学文献增加的背景下,从文本中提取药物相互作用成为可能,为此本文提出一种基于双向门控循环单元(GRU)和卷积神经网络(CNN)相融合的双层药物关系抽取模型,使用DDIExtraction2013作为数据集进行多组实验评估,实验结果获得最高75%的综合测评率;与其他方法相比较,基于双向GRU和CNN的双层模型可以有效地抽取文本中的药物相互作用关系。
关键词:
药物相互作用;生物医学关系抽取;药物关系抽取;门控循环单元;卷积神经网络
收稿日期:
2020-06-01
中图分类号:
TP391
文献标识码:
A
文章编号:
1672-4291(2020)06-0108-06
基金项目:
浙江省智慧医疗工程技术研究中心资助项目(2016E10011);苏州市姑苏科技创业天使计划项目(CYTS2018233);南京邮电大学引进人才科研启动基金(NY217136)
Doi:
Extraction of drug-drug interaction based on bidirectional GRU and CNN
GONG Lejun1,2*, LIU Xiaolin1,2, GAO Zhihong3, LI Huakang1,4,5
(1 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China;2 Jiangsu Key Lab of Big Data Security & Intelligent Processing, Nanjing 210023, Jiangsu, China;3 Zhejiang Engineering Research Center of Intelligent Medicine, Wenzhou 325035, Zhejiang, China;4 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, Guangdong, China;5 Suzhou Privacy Information Technology Company, Suzhou 215011, Jiangsu, China)
Abstract:
Drug-drug interaction (DDI) is the difference between pharmacodynamics and pharmacokinetics of different drugs, which may produce unpredictable side effects or even threaten the life safety of patients. With the rapid development of information technology and the increase of exponential biomedical literature, it is possible to extract drug interactions from texts.A two-layer drug relationship extraction model based on the fusion of bidirectional GRU (bi-gated recurrent unit, BiGRU) and convolutional neural network (CNN) is proposed.DDIExtraction 2013 is used as data set to evaluate multiple groups of experiments, and obtain the highest comprehensive evaluation rate of 75% is obtained. Compared with other′s works, the two-layer model based on bidirectional GRU and CNN can effectively extract the drug interaction relationship in the text.
KeyWords:
drug-drug interaction(DDI); biomedical relationship extraction; drug relationship extraction; GRU; CNN