自然科学版
陕西师范大学学报(自然科学版)
数据挖掘专题
基于多样化初始种群的自适应变异多目标优化策略
PDF下载 ()
李二超*, 杨润宁
(兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050)
李二超,男,教授,博士生导师,主要研究方向为人工智能、多目标优化、机器人控制等。E-mail:lecstarr@163.com
摘要:
为平衡多目标进化算法(MOEAs)的收敛性与多样性,提出了基于多样化初始种群的自适应变异多目标优化策略(IM),该策略可以与基于支配关系以及基于分解的MOEAs相结合。IM使用多样化初始种群的方法,使得算法的初始种群具有更好的多样性,在种群进化过程中再使用自适应变异方法,将优秀个体的变异概率减小,同时增加较差个体的变异概率,提高种群的收敛速率。将结合了IM策略的MOEA/D-DE、NSGA-Ⅲ及NSGA-Ⅱ算法与原MOEA/D-DE、NSGA-Ⅲ、NSGA-Ⅱ算法进行对比,并以IM-MOEA/D-DE与IM- NSGA-Ⅲ为例与其他4种典型多目标优化算法MOEA/D-PaS、MOEA/DD、SPEA/R以及VaEA进行对比,结果表明引入IM策略对MOEA/D-DE、NSGA-Ⅲ、NSGA-Ⅱ算法的收敛性及多样性均有较大提高,其与现有经典的多目标算法相比有较强的竞争力。
关键词:
多目标优化;多样化初始种群;自适应变异;多样性;收敛性
收稿日期:
2020-06-01
中图分类号:
TP315.69
文献标识码:
A
文章编号:
1672-4291(2020)06-0096-12
基金项目:
国家自然科学基金(6173026,61403175)
Doi:
Adaptive mutation multi-objective optimization strategy based on diverse initial population
LI Erchao* , YANG Running
(College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China)
Abstract:
In order to solve the problem of how to balance convergence and diversity of MOEAs, an adaptive mutation multi-objective optimization strategy based on diverse initial population (IM) is proposed. This strategy can be combined with MOEAs based on Pareto dominance and decomposition. IM uses the method of diversification of initial population, which makes the initial population of the algorithm have better diversity. Then, in the process of population evolution, adaptive mutation method is used to reduce the mutation probability of excellent individuals, increase the mutation probability of poor individuals and improve the convergence rate of population. In the experiment part, the MOEA/D-DE, NSGA-Ⅲ and NSGA-Ⅱ algorithms of IM strategy are compared with the original MOEA/D-DE, NSGA-Ⅲ and NSGA-Ⅱ algorithms, and IM- MOEA/D-DE and IM-NSGA-Ⅲ are taken as examples to compare with the other four typical multi-objective optimization algorithms MOEA/D-Pas、MOEA/DD、SPEA/R and VaEA.The results show that IM strategy can improve the convergence and diversity of MOEA/D-DE, NSGA-Ⅲ and NSGA-Ⅱ algorithms, and it has a strong competitiveness compared with the existing classical multi-objective algorithm.
KeyWords:
multi-objective optimization; diversified initial population; adaptive mutation; diversity; convergence