自然科学版
陕西师范大学学报(自然科学版)
生物医学与信息工程专题
基于心率变异性信号的睡眠呼吸暂停检测方法
PDF下载 ()
牛艳玲,刘健,朱一荻,李翔,李锦*,凤飞龙
(陕西师范大学 物理学与信息技术学院,陕西 西安 710119)
李锦,女,副教授,硕士生导师,研究方向为生物医学工程。E-mail: lijin1997@snnu.edu.cn
摘要:
提出了一种仅使用心率变异性信号来自动检测睡眠呼吸暂停的方法。首先,从心电信号中提取心率变异性信号,并进行异常值处理和分段;其次,利用基于方差分析(analysis of variance,ANOVA))和最大相关-最小冗余(max-relevance and min-redundancy,mRMR)的两阶段特征选择策略获得特征向量;最后,采用五折交叉验证训练随机森林分类器。结果表明:本算法使用9个特征将每分钟“epoch”信号分类为呼吸暂停或正常,在测试集中获得的睡眠呼吸暂停识别的平均准确率为80%,Kappa系数0.61;该方法具有无创且低成本的特性,有利于便携式睡眠检测设备的硬件实现。
关键词:
睡眠呼吸暂停综合症;心率变异性;特征选择;随机森林
收稿日期:
2020-06-06
中图分类号:
R318.6
文献标识码:
A
文章编号:
1672-4291(2020)06-0026-07
基金项目:
国家自然科学基金(11974231, 11774212);陕西省自然科学基金(2020SF-134)
Doi:
Sleep apnea detection method based on heart rate variability signal
NIU Yanling,LIU Jian,ZHU Yidi,LI Xiang,LI Jin*,FENG Feilong
(School of Physics and Information Technology, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
The method that heart rate variability signals automatic detecting sleep apnea is proposed. The method includes three stages. First, extract heart rate variability signals from ECG signals, and perform outlier processing and segmentation. Secondly, the two-stage feature selection strategy based on analysis of variance (ANOVA) and max-relevance and min-redundancy (mRMR) proposed in this thesis is used to obtain feature vectors. Finally, a random forest classifier is trained using 5-fold cross-validation. The algorithm uses 9 features to classify each 1-minute “epoch” as apnea or normal. The average accuracy of sleep apnea recognition obtained in the test set is 80%, and the Kappa coefficient is 0.61. This method has the characteristics of non-invasive and low cost, which is beneficial to the hardware implementation of portable sleep detection devices.
KeyWords:
sleep apnea syndrome; heart rate variability; feature selection; random forest