自然科学版
陕西师范大学学报(自然科学版)
生物医学与信息工程专题
基于小波树稀疏结构的磁共振成像快速重构算法
PDF下载 ()
鲍中文1,段继忠1*,杨俊东2
(1 昆明理工大学 信息工程与自动化学院,云南 昆明 650500;2 云南大学 信息学院,云南 昆明 650500)
段继忠,男,副教授,研究方向为图像处理、并行计算和深度学习等。E-mail:duanjz@kmust.edu.cn
摘要:
为提高磁共振成像的重构速度,提出了一种基于小波树稀疏结构的磁共振成像快速重构算法,即基于小波树稀疏结构,结合L1正则项和TV正则项的共同约束,与最小二乘保真项构成重构问题;首先分离变量,之后采用交替方向乘子法将重构问题分解为多个易于求解的子问题,针对每个子问题得到其解析解,从而有效地提高了重构算法的效率。实验结果表明:在不同的数据集下,本文算法的成像重构速度比WaTMRI算法平均快约3.3倍。
关键词:
磁共振成像;压缩感知;小波树稀疏;交替方向乘子法
收稿日期:
2019-11-08
中图分类号:
TP391.41
文献标识码:
A
文章编号:
1672-4291(2020)06-0001-09
基金项目:
国家自然科学基金(61861023);昆明理工大学引进人才科研启动基金(省级人培)(KKSY20170301);云南科技计划重点项目(2018ZF017)
Doi:
Fast reconstruction algorithm of magnetic resonance imaging based on wavelet tree sparsity structure
BAO Zhongwen1, DUAN Jizhong1*, YANG Jundong2
(1 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;2 School of Information Science and Engineering, Yunnan University, Kunming 650500, Yunnan, China)
Abstract:
In order to enhance the reconstruction speed of magnetic resonance imaging, a new fast reconstruction algorithm of magnetic resonance imaging based on wavelet tree sparse structure is proposed. Based on the wavelet tree sparse constraint, combining L1 regularization term and TV regularization term constraint, and least square fidelity term constitutes a reconstruction optimization. First, the variable splitting method is used to separate the variables, and then the alternating direction method of multipliers is used to decompose the reconstruction problem into several easy-to-solve subproblems. The solution of each sub-problem can obtain an analytical solution, which can effectively increase the reconstruction performance of magnetic resonance imaging. The experimental results show that the reconstruction effect of our algorithm is better than the comparative WaTMRI algorithm, and the imaging reconstruction speed is about 3.3 times faster than the WaTMRI algorithm on average.
KeyWords:
magnetic resonance imaging; compressed sensing; wavelet tree sparsity; alternating direction method of multipliers(ADMM)