自然科学版
陕西师范大学学报(自然科学版)
人工智能专题
基于邻域保持嵌入算法的语种识别
PDF下载 ()
梁春燕*, 曹伟
(山东理工大学 计算机科学与技术学院, 山东 淄博 255049)
梁春燕,女,讲师,博士,研究方向为说话人识别、语种识别、说话人分段聚类等。E-mail:liangchunyan_sdut@163.com
摘要:
语种识别中现有的总变化因子分析仅能反映语音数据的整体结构,不能挖掘其局部内在结构信息, 并且未考虑训练语音数据的语种类别。针对此问题,提出了基于邻域保持嵌入算法的语种识别,通过构建邻接图以获得语音数据的局部邻域结构,同时通过有监督训练有效利用语音数据的语种标注信息。在2011年美国国家标准与技术研究院语种识别评测的30 s和10 s测试集上进行了对比实验。实验结果表明,邻域保持嵌入算法能够有效弥补总变化因子分析的不足,可明显提高系统的识别性能。
关键词:
语种识别;邻域保持嵌入;总变化因子分析
收稿日期:
2019-12-20
中图分类号:
TN912.34
文献标识码:
A
文章编号:
1672-4291(2020)02-0038-05
基金项目:
国家自然科学基金(11704229);山东省自然科学基金(ZR2017LA011);山东省高等学校科技计划(J17KA078)
Doi:
Language recognition based on neighborhood preserving embedding
LIANG Chunyan*,CAO Wei
(College of Computer Science and Technology,Shandong University of Technology,Zibo 255049, Shandong, China)
Abstract:
The state-of-the-art total variability factor analysis in language recognition can only preserve the global structure of speech data, without mining the local structure information, and the language of training speech data is not considered. To solve the problem, neighborhood preserving embedding (NPE) algorithm is introduced into the language recognition system. NPE can preserve the local neighborhood structure of speech data by constructing a neighborhood graph. As well,NPE can effectively use the language label information of speech data by supervised training. The proposed method is compared with the total variability factor analysis in 30 s and 10 s tasks of the NIST 2011 language recognition evaluation (LRE) dataset. The experimental results indicate that the proposed NPE method can overcome the deficiency of total variability factor analysis and improve the system performance significantly.
KeyWords:
language recognition;neighborhood preserving embedding;total variability factor analysis