自然科学版
陕西师范大学学报(自然科学版)
人工智能专题
一种基于改进运动历史图像和支持向量机的行为识别算法
PDF下载 ()
苏寒松*,陈震宇, 龙鑫, 刘高华
(天津大学 电气自动化与信息工程学院, 天津 300072)
苏寒松,男,教授,博士,研究方向为图像处理、移动通信、计算机视觉。E-mail: shs@tju.edu.cn
摘要:
针对传统运动历史图像难以区分相似运动的缺陷,提出了一种基于改进运动历史图像和支持向量机的行为识别方法。首先提取视频帧的前景运动目标并标记出其外接矩形框,计算矩形区域内各像素的光流矢量;然后设定运动历史图像中前景像素点的灰度值为该像素点的光流长度叠加一定权重的历史灰度,而背景像素点的灰度值则按一定比例进行衰减;最后从运动历史图像中提取Hu矩为特征向量,输入支持向量机进行分类,从而完成人体行为识别。在KTH数据集的实验结果表明,所提算法能够满足实时性要求,识别率可达99%。
关键词:
计算机视觉;行为识别;运动历史图像;光流;Hu矩;支持向量机
收稿日期:
2019-07-01
中图分类号:
TP391.4
文献标识码:
A
文章编号:
1672-4291(2020)02-0017-08
基金项目:
国家自然科学基金(61471260).
Doi:
A motion recognition method based on improved motion history image and support vector machine
SU Hansong*, CHEN Zhenyu, LONG Xin, LIU Gaohua
(College of Electrical Automation and Information Engineering,Tianjin University, Tianjin 300072, China)
Abstract:
Aiming at the defect of distinguishing similar motion from the traditional motion history image, a behavior recognition method combining improved motion history image and support vector machine was proposed. Firstly, the moving target of video frame was extracted and the external rectangular box of the moving target was marked out, the optical flow vector was calculated for each pixel in the rectangular region. Secondly, the gray value of each foreground pixel in the motion history image was set as the sum of the optical flow length at the pixel position and the historical gray value of a certain weight. While the gray value of each background pixel was attenuated by weight. Finally, the Hu moments were extracted from the motion history images and were sent as input to the SVM classifier for classification, thus completing human behavior recognition. The experimental results on KTH dataset show that the proposed method can meet the real time requirement and the recognition rate can reach 99%.
KeyWords:
computer vision; motion recognition; motion history image; optical flow; Hu moments; support vector machine