自然科学版
陕西师范大学学报(自然科学版)
遥感应用专题
基于多特征提取与优选的冬小麦面积提取
PDF下载 ()
杨蕙宇1, 王征强2, 白建军1*, 韩红珠1
(1 陕西师范大学 地理科学与旅游学院, 陕西 西安 710119; 2 宝鸡市勘察测绘院, 陕西 宝鸡 721000)
白建军,男,教授,博士生导师,研究方向为GIS理论与应用、农业干旱遥感等。E-mail:bjj@snnu.edu.cn
摘要:
选取2015年10月至2016年6月冬小麦生长期9个关键时相的GF-1 WFV影像为数据源,综合多时相的光谱特征、植被指数特征与纹理特征,设置4组特征组合方案进行对比分析;并根据特征重要性进行特征选择,得到最优的特征子集建立随机森林分类模型,对河南省许昌市地物类型进行分类并实现冬小麦种植面积的提取。结果表明:在没有进行特征选择的情况下,4种特征组合中,综合多种特征类型的D组分类精度最高,经过特征选择后,各组分类精度均得到不同程度的提高,说明通过多种类型的特征变量综合与特征优选均可有效地提高分类精度;不同特征类型以及不同时相的特征变量对分类的贡献率不同,贡献率由大到小为植被指数、光谱指数、纹理特征,冬小麦生长季的2月、3月、5月、6月比其他月份对分类精度的贡献率更高;河南省许昌市冬小麦面积为2 258.7 km2,分类的总体精度达到95.18%,Kappa系数为0.925 5,其中冬小麦的制图精度与用户精度均达到98.67%。
关键词:
遥感;冬小麦;GF-1;随机森林;特征选择
收稿日期:
2018-10-18
中图分类号:
S512.11;S127
文献标识码:
A
文章编号:
1672-4291(2020)01-0040-10
基金项目:
国家自然科学基金(41171310);陕西省自然科学基础研究计划(2016MJ4016)
Doi:
Winter wheat area extraction based on multi-feature extraction and feature selection
YANG Huiyu1, WANG Zhengqiang2, BAI Jianjun1*,HAN Hongzhu1
(1 School of Geography and Tourism, Shaanxi Normal University, Xi′an 710119, Shaanxi, China;2 Baoji City Surveying and Mapping Institute, Baoji 721000, Shaanxi, China)
Abstract:
Nine key phase GF-1 WFV images covering the growing period of winter wheat from October 2015 to June 2016 were selected as data sources.The multi-temporal spectral characteristics, vegetation index and texture features were integrated to set up four groups of feature combinations. Then,in order to improve the accuracy of classifying the land type and extracting winter wheat planting area in Xuchang City, Henan province, features were selected according to the feature importance scores and the optimal feature subsets were obtained to establish a random forest classification model. The results showed that in the four feature combinations without feature selection, the combination of all features has the highest classification accuracy. After the feature selection, the classification accuracy of each group was improved, indicating that comprehensive multiple types of feature variables and feature selection can effectively improve the classification accuracy. The contribution rates of different feature types and different time series feature variables are different, among which vegetation index>spectral feature>texture feature. Compared to other months during the winter wheat growth period, February, March, May and June has a higher contribution rate.The total area of winter wheat in Xuchang City, Henan province is 2 258.7 km2.The overall classification accuracy reached 95.18%, the Kappa coefficient was 0.925 5, and the mapping accuracy and user accuracy of winter wheat reached 98.67%.
KeyWords:
remote sensing; winter wheat area; GF-1; random forest; feature selection