Abstract:
Object detection is one of the core tasks in the field of computer vision. In recent years, with the rapid development of deep learning, the object detection technology based on deep learning has become the very popular mainstream algorithm. It has been widely used in many fields, such as face detection, vehicle detection, pedestrian detection, and unmanned driving, etc.. This paper systematically summarizes the current research progress of deep learning-based object detection algorithms, and thoroughly analyzes the advantages and disadvantages of each algorithm and its results on the datasets VOC2007 and COCO. Finally, the future development of object detection based on deep learning is also discussed in this paper.