自然科学版
陕西师范大学学报(自然科学版)
人工智能专题
基于深度学习的目标检测算法研究进展
PDF下载 ()
谢娟英*, 刘然
(陕西师范大学 计算机科学学院,陕西 西安 710119)
谢娟英,女,教授,博士生导师,研究方向为机器学习、数据挖掘、生物医学数据分析等。E-mail:xiejuany@snnu.edu.cn
摘要:
目标检测是计算机视觉领域的核心任务之一。随着深度学习的迅猛发展,基于深度学习的目标检测技术已经成为该领域的主流算法,被广泛应用于人脸检测、车辆检测、行人检测以及无人驾驶等领域。本文系统总结了当前基于深度学习的目标检测算法的研究进展,对各算法的优、缺点及其在VOC2007和COCO数据集上的检测结果进行了全面分析,并对基于深度学习的目标检测算法的未来发展进行了展望。
关键词:
深度学习;目标检测;卷积神经网络;计算机视觉; 人工智能
收稿日期:
2019-07-21
中图分类号:
O142
文献标识码:
A
文章编号:
1672-4291(2019)05-0001-09
基金项目:
国家自然科学基金(61673251);国家重点研发计划(2016YFC0901900);中央高校基本科研业务费专项资金(GK201701006);研究生培养创新基金(2015CXS028,2016CSY009)
Doi:
The study progress of object detection algorithms based on deep learning
XIE Juanying*, LIU Ran
(School of Computer Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
Object detection is one of the core tasks in the field of computer vision. In recent years, with the rapid development of deep learning, the object detection technology based on deep learning has become the very popular mainstream algorithm. It has been widely used in many fields, such as face detection, vehicle detection, pedestrian detection, and unmanned driving, etc.. This paper systematically summarizes the current research progress of deep learning-based object detection algorithms, and thoroughly analyzes the advantages and disadvantages of each algorithm and its results on the datasets VOC2007 and COCO. Finally, the future development of object detection based on deep learning is also discussed in this paper.
KeyWords:
deep learning; object detection; convolutional neural networks; computer vision; artificial intelligence