自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
因式分解的三维非刚体重建方法
PDF下载 ()
梁 新 刚1,2
(1 现代教学技术教育部重点实验室, 陕西 西安 710062;2陕西师范大学 计算机科学学院, 陕西 西安 710119)
梁新刚,男,讲师,主要研究方向为三维重建、计算机视觉。E-mail: 1072600059@qq.com
摘要:
为了实现三维非刚体的重建,提出了一种因式分解的三维非刚体重建方法,该方法首先利用图像点和深度因子构成的图像矩阵为低秩的特性,求到相差一个变换矩阵的射影重建;再利用投影矩阵的约束关系,线性地求解出该变换矩阵,完成到欧氏重建的过渡。该方法采用线性方法求变换矩阵,而且在求解过程中将所有图像平等地对待。模拟实验和真实实验数据结果表明,该重建方法具有鲁棒性好、重投影误差小等优点。
关键词:
非刚体;三维重建;因式分解
收稿日期:
2017-08-31
中图分类号:
TP391.1
文献标识码:
A
文章编号:
1672-4291(2018)05-0016-06
基金项目:
国家自然科学基金(61402274);现代教学技术教育部重点实验室学习科学交叉学科培育计划;陕西师范大学实验技术研究项目(SYJS201314)
Doi:
A factorization method for 3D non-rigid reconstruction
LIANG Xingang1,2
(1 Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi′an 710062, Shaanxi, China;2 School of Computer Science, Shaanxi Normal University,Xi′an 710119, Shaanxi, China)
Abstract:
To reconstruction the 3D non-rigid from a un-calibration image sequence, a factorization method for 3D non-rigid reconstruction is presented. Firstly, based on the character that the image matrix composed by all the image points and depth factors is a low rank, the projective reconstruction which is different a transformation matrix with the real one is obtained. The transformation matrix can be linearly solved based on the constraints of the projective matrix, and the reconstruction can be upgrade to the Euclid one. The innovation of the method is that the solving of the transformation matrix is linear and all the images are treated uniformly. The experiments with both simulate and real data show that the method presented in the paper is efficient.
KeyWords:
non-rigid; 3D reconstruction; factorization