自然科学版
陕西师范大学学报(自然科学版)
生命科学
高浓度CO2诱导气孔关闭中H2O2和NO的关系及其酶源
PDF下载 ()
黑淑梅1,2, 佘小平1*
(1 陕西师范大学 生命科学学院, 陕西 西安 710119; 2 延安大学 生命科学学院, 陕西 延安 716000)
佘小平,男,教授,博士生导师,主要从事植物发育生理、抗性生理及细胞信号转导等方面的研究工作。E-mail:shexiaoping@snnu.edu.cn
摘要:
以拟南芥(Arabidopsis thaliana)野生型、NADPH氧化酶突变体和硝酸还原酶(NR)突变体为材料,借助气孔试验和激光扫描共聚焦显微镜技术, 对H2O2和NO的酶源以及H2O2和NO的关系进行了研究。结果表明:高浓度CO2关闭了野生型的气孔,该效应在AtrbohF突变体中部分缺失、在AtrbohD/F中完全缺失,但在AtrbohD中未见缺失;同时,高浓度CO2诱导野生型保卫细胞H2O2产生的效应在AtrbohD和AtrbohF中部分降低,但在AtrbohD/F中完全缺失。这些结果显示,AtrbohD 和 AtrbohF催化产生的H2O2参与高浓度CO2诱导气孔关闭。高浓度CO2能诱导野生型保卫细胞NO合成和气孔关闭,该效应在Nia1-2和Nia2-5/Nia1-2突变体中完全缺失,但在Nia2-1中未缺失,显示Nia1来源的NO参与高浓度CO2诱导气孔关闭。高浓度CO2未诱导AtrbohF和AtrbohD/F保卫细胞NO合成,但诱导Nia1-2和Nia2-5/Nia1-2保卫细胞H2O2产生。NO供体SNP显著恢复AtrbohF和AtrbohD/F突变体气孔对高浓度CO2反应的缺失,但H2O2未恢复Nia1-2和Nia2-5/Nia1-2气孔对高浓度CO2反应的缺失。所以,高浓度CO2诱导气孔关闭中NO合成依赖于H2O2产生。
关键词:
高浓度二氧化碳; NADPH氧化酶; 硝酸还原酶; 过氧化氢; 一氧化氮; 气孔运动
收稿日期:
2017-12-05
中图分类号:
Q945.7
文献标识码:
A
文章编号:
1672-4291(2018)03-0080-07
基金项目:
陕西省自然科学基础研究计划(2015JM3121);延安大学科研计划项目(YDK2015-52)
Doi:
Relation and enzymatic sources between H2O2 and NO in elevated CO2-induced stomatal closure
HEI Shumei1,2, SHE Xiaoping1*
(1 School of Life Sciences, Shaanxi Normal University, Xi′an 710119, Shaanxi, China; 2 School of Life Sciences, Yan′an University, Yan′an 716000, Shaanxi, China)
Abstract:
Although the roles of hydrogen peroxide (H2O2) and nitric oxide (NO) in elevated CO2-induced stomatal closure have been well known, the enzymatic sources and the relationship between H2O2 and NO during elevated CO2-induced stomatal closure are not fully clear. In the present study, Arabidopsis (Arabidopsis thaliana) wild type, NADPH oxidase and nitrate reductase (NR) mutants were used as materials, the enzymatic routes and the relationship between H2O2 and NO in elevated CO2-led stomatal closure were investigated by means of stomatal bioassay and laser scanning confocal microscopy. Elevated CO2 closed the stomata in wild type, this effect was partially abolished in AtrbohF mutant, and fully abolished in AtrbohD/F. However, like in wild type, elevated CO2 closed the stomata in AtrbohD. The results show that H2O2 sourced from both AtrbohD and AtrbohF is involved in elevated CO2-caused stomatal closure. Furthermore, elevated CO2 promoted NO synthesis in guard cells and stomatal closure in wild type, these effects were completely prevented in Nia1-2 and Nia2-5/Nia1-2, but were not in Nia2-1. The data indicate that Nia1-dependent NO synthesis mediates elevated CO2-triggered stomatal closure. In addition, elevated CO2 induced NO synthesis in guard cells in wild type was fully abolished in AtrbohF and AtrbohD/F, but as in guard cells in wild type, elevated CO2 stimulated H2O2 production in Nia1-2 and Nia2-5/Nia1-2. SNP significantly rescued the defects in AtrbohF and AtrbohD/AtrbohF mutants, but H2O2 did not restore the deficiencies of Nia1-2 and Nia2-5/Nia1-2, in elevated CO2 -induced stomatal closure. These data clearly show that H2O2 induces NO synthesis in elevated CO2-led stomatal closure.
KeyWords:
elevated CO2; NADPH oxidase; nitrate reductase; hydrogen peroxide; nitric oxide; stomatal movement