自然科学版
陕西师范大学学报(自然科学版)
换能器与超声加工专题
基于支持向量机的超声强化加工表面性能预测
PDF下载 ()
陈爽*, 胡家进, 赵录冬
(江西理工大学 机电工程学院, 江西 赣州 341000)
陈爽,女,副教授,硕士生导师,研究方向:精密与特各加工技术。E-mail:chenshuang826@126.com
摘要:
在超声振动挤压强化加工中,利用支持向量机的回归原理研究了工艺参数与工件加工表面性能之间的非线性关系。在45号钢超声强化加工正交试验的基础上,选取主轴转速、工具头振幅以及挤压次数3个因素中的最优参数,根据等差原则,在进给速度和挤压力参数各取28组数据基础上,实验测得其表面粗糙度和硬度;将所得数据代入支持向量机模型,建立超声强化加工粗糙度和硬度曲线非线性特性模型和回归函数,并进行实验验证。结果表明:预测数据与原始数据基本吻合,证明此模型可以有效预测加工后零件的表面粗糙度和硬度。
关键词:
超声振动挤压强化; 支持向量机;非线性模型;工艺参数
收稿日期:
2018-01-04
中图分类号:
TP391.42
文献标识码:
A
文章编号:
1672-4291(2018)03-0035-07
基金项目:
江西省高校科技落地计划(KJLD14044); 江西省自然科学基金(20151BBE50037);江西省教育厅基金(GJJ150675)
Doi:
Surface performance prediction of ultrasonic vibration extrusion process based on support vector machine
CHEN Shuang*, HU Jiajin, ZHAO Ludong
(Faculty of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China)
Abstract:
In order to accurately describe the nonlinear characteristics between process parameters and the finished surface properties after ultrasonic strengthening, the optimal parameters of the spindle speed, the tool head amplitude and the number of extrusion were selected in the ultrasonic strengthening process.According to the principle of grade, based on 28 sets of data were obtained of feed velocity and pressure. Surface roughness and hardness data was obtained by experimental measurements. The resulting datas were used into the nonlinear hysteretic model of support vector machines and the roughness and hardness nonlinear characteristic model of ultrasonic strengthening was established.The real data was using to verify the model finally. The results show that the predicted data coincides with the original data.It is proved that the model is feasible for the prediction of the surface roughness and hardness of the parts after ultrasonic machining.
KeyWords:
ultrasonic vibration extrusion strengthening; support vector machine; nonlinear model; process parameter