自然科学版
陕西师范大学学报(自然科学版)
源与环境科学
宁夏石嘴山地区盐碱地变化的目标级检测
PDF下载 ()
吴静波1, 汪西原1,2*
(1 宁夏大学 物理与电子电气工程学院; 2 宁夏沙漠信息智能感知自治区重点实验室, 宁夏 银川 750021)
汪西原,女,教授。E-mail:wangxiy@nxu.edu.cn
摘要:
采用同一地区、不同时相的Landsat 8 OLI影像数据,结合影像的光谱、纹理和地理特征等24个变量,分别采用随机森林分类法(RF)和支持向量机分类法(SVM)对宁夏石嘴山地区进行影像分类,研究发现:影响分类模型精度的有DEM数据、归一化差异植被指数(NDVI)、短波红外波段、归一化差异湿度指数(NDMI)与第一主分量均值(M)等重要参量。RF的分类精度略高于SVM,总体分类精度为95.492%,Kappa系数为0.947;盐碱地的分类精度为98.510%,计算效率是SVM的16.5倍;RF方法更适合进行盐碱地目标级的变化检测。根据两个时相影像的RF分类结果,得到2014—2017年研究区盐碱地面积减少约133.56 km2,减少比例56.368%,生态环境改善和盐碱地改良趋势较好。
关键词:
随机森林分类法; 盐碱地; 归一化差异植被指数; 归一化差异湿度指数; 变化检测
收稿日期:
2017-08-06
中图分类号:
TP751
文献标识码:
A
文章编号:
1672-4291(2018)02-0104-06
基金项目:
国家自然科学基金(41561087)
Doi:
A target level detection method for saline land change in Shizuishan area, Ningxia
WU Jingbo1, WANG Xiyuan1,2*
(1 School of Physics and Electronic-Electrical Engineering, Ningxia University;2 Ningxia Desert Information Intelligent Perception Autonomous Region Key Laboratory, Yinchuan 750021, Ningxia, China)
Abstract:
Using Landsat 8 OLI image data of the same region and different phases, 24 characteristic variables, such as spectral, texture and geography, are used to study the image classification with random forest classification(RF) and support vector machine classification (SVM) in Shizuishan area in Ningxia. The results show that there are some important parameters such as DEM data, normalized difference vegetation index(NDVI), shortwave infrared band, normalized difference humidity index (NDMI) and first principal component mean (M),affecting the accuracy of image classification. The classification accuracy of RF is slightly higher than that of SVM, the overall classification accuracy is 95.492%, Kappa coefficient is 0.947. The accuracy of saline-alkali soil category is 98.510%, and the computational efficiency is 16.5 times of SVM. RF is more suitable for detecting the saline land change at target level. According to the RF classification results of the two time-series images, the area of saline-alkali land decreased by 133.56 km2 from 2014 to 2017, with a total reduction of 56.368%. The improvement of ecological environment and the improvement of saline-alkali land are better.
KeyWords:
random forest classification; saline land; normalized difference vegetation index(NDVI); normalized difference humidity index(NDMI); change detection