自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
比率型Holling-Leslie捕食模型的稳定性分析
PDF下载 ()
杨文彬1*, 王艳娥2, 李艳玲3
(1 西安邮电大学 理学院, 陕西 西安 710121;2 陕西师范大学 计算机科学学院, 陕西 西安 710119;3 陕西师范大学 数学与信息科学学院, 陕西 西安 710119)
杨文彬,男,讲师,博士。E-mail: yangwenbin-007@163.com
摘要:
研究一类比率依赖Holling-Leslie捕食-食饵模型。利用谱分析方法讨论了局部系统正常数平衡态的稳定性, 进而说明周期轨道的存在性。利用同样方法讨论反应扩散系统正常数平衡态的Turing不稳定性, 并通过上下解方法证明其全局稳定性。
关键词:
Holling-Leslie捕食模型; 反应扩散系统; 稳定性
收稿日期:
2017-05-08
中图分类号:
O175.26
文献标识码:
A
文章编号:
1672-4291(2018)01-0020-05
基金项目:
陕西省教育厅专项科研计划(16JK1710,16JK1708,16JK1694)
Doi:
Analysis on stability of a ratio-dependent Holling-Leslie type predator-prey model
YANG Wenbin1*, WANG Yan′e2, LI Yanling3
(1 School of Science, Xi′an University of Posts and Telecommunications, Xi′an 710121, Shaanxi, China; 2 School of Computer Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China;3 School of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
A class of ratio-dependent Holling-Leslie type predator-prey model was studied in the paper.The stability of positive equilibrium for the local system is discussed by the method of spectral analysis. Meanwhile, the existence of periodic orbits is shown. Secondly, the Turing instability of the positive equilibrium for the reaction-diffusion system is also discussed by the same way, and then by the upper and lower solution method, the global stability is obtained.
KeyWords:
Holling-Leslie predator-prey model; reaction-diffusion system; stability