自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
基于LARS-SVR的电影总票房预测模型研究
PDF下载 ()
陈邦丽, 徐美萍*
(北京工商大学 理学院, 北京 100048)
徐美萍,女,副教授,博士。E-mail:xumeiping2006@163.com
摘要:
考虑影响票房的各种因素,使用最小角回归(LARS)算法进行因素选取,再利用支持向量回归(SVR)算法对所选因素建立预测模型。结果显示:电影热度、电影制式、上映时间、影片类型、演员是影响一部影片总票房的主要因素,且本文提出的LARS-SVR模型既通过变量选择避免了SVR出现的过拟合现象,还保持了与LARS、逐步回归相当的拟合效果,预测误差也远小于后面两个模型。此研究结果可为电影制片方、宣传营销方及院线经营者提供一些决策参考。
关键词:
电影总票房预测; 影响因素; 最小角回归; 支持向量回归
收稿日期:
2017-03-15
中图分类号:
O212.4;F272.1
文献标识码:
A
文章编号:
1672-4291(2018)01-0010-06
基金项目:
国家自然科学基金(11501017);北京市教委科研计划一般项目(理工类)(SQKM201610011006)
Doi:
Film total box office returns forecasting model research based on LARS-SVR
CHEN Bangli, XU Meiping*
(School of Science, Beijing Technology and Business University, Beijing 100048, China)
Abstract:
All kinds of factors are taken into account in this paper. Then the least angle regression (LARS) algorithm is applied to implement influence factors selection and the support vector regression (SVR) is employed to fit the total box office returns with the selected main factors. The empirical research shows that the volume, the film format, the releasing time and the genre of a film are the main influence factors of the total box office returns. And LARS-SVR not only avoids overfitting phenomenon of SVR by variable selection, but also retains similar fitting accuracy with LARS and stepwise regression and has far less forecasting error than the latter two models. Finally, on the basis of empirical results, some recommendations are proposed as the reference for the producer, the marketing company and the cinema operator to make decision.
KeyWords:
film total box office returns forecasting; influence factors; least angle regression; support vector regression