自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
基于改进超限学习机的N400诱发电位测谎方法
PDF下载 ()
艾玲梅*, 余龙
(陕西师范大学 计算机科学学院, 陕西 西安710119;现代教学技术教育部重点实验室, 陕西 西安 710062)
艾玲梅,女,副教授。E-mail:1427147182@qq.com
摘要:
针对现有测谎方法识别率低的缺陷,将人工免疫算法和超限学习机相结合,提出了一种基于AIA-ELM的N400诱发电位测谎新方法。将24名被试分成犯罪组和对照组,提取多通道的N400峰值、平均幅值、中值频率作为特征向量。采用AIA-ELM算法对被试的探测刺激与无关刺激进行分类,犯罪组被试的识别率为97.60%。实验结果表明,本方法能较有效地进行谎言区分,为N400测谎提供了一种新的参考依据。
关键词:
N400; 超限学习机; 人工免疫算法; 测谎
收稿日期:
2016-02-06
中图分类号:
TP301.6
文献标识码:
A
文章编号:
1672-4291(2017)05-0012-05
基金项目:
国家自然科学基金(61672021); 陕西省自然科学基金(2017JM6108)
Doi:
Lie detection method of N400 evoked potential based on improved extreme learning machine
AI Lingmei*, YU Long
(School of Computer Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China;Key Laboratory of Modern Teching Technology, Ministry of Education, Xi′an 710062, Shaanxi, China)
Abstract:
Aiming at the defects of the low recognition rate of lie detection, this paper proposes a new method of N400 evoked potential polygraphy based on AIA-ELM, which integrates the artificial immune algorithm and the extreme learning machine. 24 subjects are divided into a crime group and a control group respectively to extract the multi-channel peak value, average amplitude and median frequency of N400, and all of them just constitute the eigenvectors. AIA-ELM algorithm is applied to classify the probe stimulus and the irrelevant stimulus, and the recognition rate of crime group is 97.60%.Experimental results show that this method can distinguish lies effectively and provide a new reference for lie detection based on N400.
KeyWords:
N400;extreme learning machine;artificial immune algorithm;lie detection