自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
基于二级改进LeNet-5的交通标志识别算法
PDF下载 ()
党倩2, 马苗1,2,3*, 陈昱莅1,2
(1 现代教学技术教育部重点实验室, 陕西 西安 710062;2 陕西师范大学 计算机科学学院, 陕西 西安 710119;3 陕西省语音与图像信息处理重点实验室, 陕西 西安 710072)
马苗,女,教授。E-mail:mmthp@snnu.edu.cn
摘要:
以真实场景中拍摄的交通标志图像数据集GTSRB为研究对象,将卷积神经网络与支持向量机相结合,提出一种基于二级改进LeNet-5的交通标志识别算法。该算法首先根据识别系统的实时性要求,对原始LeNet-5结构进行改进;然后用裁剪、灰度化、图像增强和尺寸归一化等操作对原始图像进行预处理,得到32×32的感兴趣区域;接下来,利用数据集GTSRB训练出一个二级改进LeNet-5,其中第一级改进LeNet-5将感兴趣区域中包含的交通标志粗分为6类,第二级改进LeNet-5对粗分类结果进行细分类,识别出交通标志所属的最终类别。实验结果表明,基于二级改进LeNet-5交通标志识别算法因网络模型能够提取交通标志的多尺度特征,识别正确率可达91.76%。
关键词:
卷积神经网络; 交通标志; 分类识别; 支持向量机
收稿日期:
2016-01-21
中图分类号:
TP39
文献标识码:
A
文章编号:
1672-4291(2017)02-0024-05doi:10.15983/j.cnki.jsnu.2017.02.125
基金项目:
国家自然科学基金(61501287,61501286);陕西省重点实验室开放共享项目(SAIIP201202);陕西省自然科学基础研究计划(2015JQ6208)
Doi:
A traffic sign recognition algorithm based on the 2-level improved LeNet-5
DANG Qian2, MA Miao1,2,3*, CHEN Yuli1,2
(1 Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi′an 710062, Shaanxi, China;2 School of Computer Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China;3 Shaanxi Key Lab of Speech & Image Information Processing, Xi′an 710072, Shaanxi, China)
Abstract:
Focusing on GTSRB dataset acquired in real world, a traffic sign recognition algorithm based on the 2-level improved LeNet-5 is proposed,which combines convolutional neural networks with support vector machines. With the consideration of the requirement of real-time recognition, the traditional network structure of LeNet-5 is improved first. After GTSRB dataset images were cropped and converted to grayscale images, their brightness and size are normalized to 32×32 images. Next, a 2-level improved LeNet-5 is trained with GTSRB dataset, where the first level categorized traffic signs to 6 categories with the improved LeNet-5, and the second level improved LeNet-5 provide with the final category. Experimental results show that the proposed algorithm could provide with a correct recognition ratio 91.76%, since the multi-scale features could be fully analyzed with 2-level improved LeNet-5.
KeyWords:
convolutional neural networks; traffic signs; classification; support vector machine