自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
一类捕食-食饵模型平衡解的分歧及稳定性
PDF下载 ()
高淑敏, 李艳玲*
(陕西师范大学 数学与信息科学学院, 陕西 西安 710119)
李艳玲,女,教授。E-mail:yanling@snnu.edu.cn
摘要:
研究一类既具有避难所又具有食饵选择的两物种间的捕食-食饵模型在第二边界条件下的平衡态正解的存在性, 其功能反应函数为Holling Ⅱ型, 给出了此解的先验估计并利用特征值理论得到此解的稳定性结论。又通过局部分歧理论, 以食饵的环境容纳量k为分歧参数,给出正常数解处分歧解的具体形式。利用特征值扰动理论得出局部分歧解稳定的条件并通过全局分歧理论将其延拓到无穷。
关键词:
捕食-食饵模型; Holling Ⅱ型; 稳定性; 全局分歧
收稿日期:
2016-01-14
中图分类号:
O175.26
文献标识码:
A
文章编号:
1672-4291(2017)02-0014-06doi:10.15983/j.cnki.jsnu.2017.02.123
基金项目:
国家自然科学基金(11271236; 11401356)
Doi:
The bifurcation and stability of the steady-state solutions for a predator-prey model
GAO Shumin, LI Yanling*
(School of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
The existence of positive solutions of the steady-state system is discussed for the predator-prey model between two species with functional response Holling type Ⅱ under the second boundary conditions, in which the model has shelters and the predator is partially coupled with alternative prey. A priori-estimate of the solution is given and its stability is also discussed by means of eigenvalue theory.By means of local bifurcation theory, taking the environmental accomodation of the prey population k as a bifurcation parameter, the specific form of solutions bifurcated from the positive constant solution is given, then the condition for the local stability of bifurcation solutions is also discussed by means of eigenvalue perturbation theorem and the local bifurcation solutions can also be extended to infinite by using global bifurcation theory.
KeyWords:
predator-prey model; Holling type Ⅱ; stability; global bifurcation