自然科学版
陕西师范大学学报(自然科学版)
数学与计算机科学
基于量子测度的两个可测集之间的干扰度
PDF下载 ()
胡凯逢, 郭志华, 曹怀信*
(陕西师范大学 数学与信息科学学院, 陕西 西安 710119)
曹怀信,男,教授,博士生导师。E-mail:caohx@snnu.edu.cn
摘要:
在讨论量子测度某些性质的基础上,引入两个可测集关于量子测度的干扰度这一概念, 并研究了它的一些性质。证明了任何量子测度都是n(≥3)级可加的; 零测集和与其不相交的任何可测集之间的干扰度为零;一个量子测度处处具有零干扰度当且仅当它是有限可加的;连续的量子测度处处具有零干扰度为当且仅当它是经典测度即可数可加的;计算了零测集的子集和与其不交的任何可测集的干扰度。
关键词:
量子测度; 可测集; 干扰度
收稿日期:
2016-06-25
中图分类号:
O174.12
文献标识码:
A
文章编号:
1672-4291(2017)02-0008-06doi:10.15983/j.cnki.jsnu.2017.02.122
基金项目:
国家自然科学基金(11371012,11401359,11471200)
Doi:
The interference degree between two measurable sets with respect to a quantum measure
HU Kaifeng, GUO Zhihua, CAO Huaixin*
(School of Mathematics and Information Science, Shaanxi Normal University, Xi′an 710119, Shaanxi, China)
Abstract:
Based on a discussion of some properties of a quantum measure, the new concept of the interference degree of two measurable sets with respect to a quantum measure is introduce, and its properties are investigated.It is proved that any quantum measurement is n(≥3) level additive and the interference of a measure-zero set between a measurable set that does not intersect the former is zero. It is also proved that a quantum measure gives zero-interference everywhere if and only if it is finitely additive and a continuous quantum measure gives zero-interference everywhere if and only if it is a classical measure, i.e. countably additive.The interference degree of a subset of measure-zero set and any measurable set that does not intersect the former is discussed.
KeyWords:
quantum measure; measurable set; interference degree