自然科学版
陕西师范大学学报(自然科学版)
物理学
量子粒子群算法在配电网多时段动态重构中的应用
PDF下载 ()
王伟, 谭阳红*
(湖南大学 电气与信息工程学院, 湖南 长沙 410082)
谭阳红,女,教授,博士生导师。E-mail:309446238@qq.com
摘要:
针对配电网负荷随时间不断变化的情况,提出了一种配电网多时段动态重构新方法。该方法以配电网有功损耗最少和开关操作次数最少为综合优化目标函数,构建多目标动态重构模型,采用开关环路矩阵与节点分层判别方法快速消除无效解,采用整数型环网编码策略大幅降低变量维数。针对该复杂模型的求解,提出了一种更适合求解配电网动态重构的整数编码型量子粒子群优化算法,对其进行有功网损最少化的时段初步划分,并在初步划分的基础上进行开关操作次数最少化的时段二次优化,进而确定最优重构方案。通过对IEEE33节点系统进行动态重构,验证结果表明本文所提方法合理、有效。
关键词:
配电网; 负荷; 多时段; 动态重构; 网损优化; 量子粒子群算法
收稿日期:
2016-04-29
中图分类号:
TM715
文献标识码:
A
文章编号:
1672-4291(2016)06-0031-08doi:10.15983/j.cnki.jsnu.2016.06.262
基金项目:
国家自然科学基金(61102039,51577046); 国家重点基础研究发展计划(973计划)(2012CB215106);湖南省自然科学基金(14JJ7029)
Doi:
The application of quantum particle swarm optimization algorithm in multi-period dynamic reconfiguration of distribution network
WANG Wei, TAN Yanghong*
(College of Electrical and Information Engineering, Hunan University, Changsha 410082, Hunan, China)
Abstract:
In order to enhance the validity of the reconfiguration of the distribution network connected with time-varying loads, an original dynamic reconfiguration method of the distribution network at multi-period is proposed. To minimize the power losses and switching times, the dynamic reconfiguration model with multi-objective is built. Invalid solutions are quickly eliminated by using switch loop matrix and node-layering discriminative method. Further more, the dimensions of variables are diminished greatly with the help of integer loop code strategy. To solve this complicated model, an integer coded quantum particle swarm optimization algorithm is proposed to better deal with the dynamic reconfiguration of the distribution network. First, aiming at minimizing the power losses, the model is divided into different time periods; then based on the first division, the model is further divided in order to minimize the switching times.Thus, the optimal reconfiguration scheme is determined.The proposed method proves to be valid and reasonable supported by the results from the dynamic reconfiguration of the IEEE33 node system.
KeyWords:
distribution network;load;multiple time periods;dynamic reconfiguration;net loss optimization; quantum particle swarm optimization